随着深度学习技术的不断发展,在图像识别领域的性能有了显著提高。不仅仅可以用来识别静态图像中的物体,还可以对视频中的物体进行实时的检测和跟踪,这里使用的是pytorch来进行模型的搭建以及物体的检测和跟踪。
首先,要明确的是目标检测和跟踪的网络架构,一般会使用一个专门的检测模型来进行物体的检测,并生成检测结果,之后使用跟踪模型来进行物体位置的实时跟踪。
对于检测模型,比较常用的是Faster-RCNN,它通过分类来检出图片中所有的目标,之后运用回归网络来精确匹配出每个物体边框。而实时跟踪模型,最常用的是Siamese-CNN,它从帧到帧之间链接分割,以追踪每个被观察到的行人,使跟踪的结果更加精准。
要使用pytorch来完成目标检测和跟踪,需要开发者依次完成以下步骤:
一、 数据准备,主要按照模型训练要求进行数据预处理,其中一般有标签文件,图像文件,记录噪声和其它不重要内容。
二、 搭建网络模型。这里首先要确定要使用的网络模型,不同的模型对应的搭建方式也不一样,在这里可以使用pytorch来完成这一过程。在选择网络模型的时候,需要考虑性能以及实用性,比如Faster-RCNN的速度很快而且可以很准确的识别所有的物体,而Siamese-CNN的速度和准确率都可以满足跟踪要求。
三、 准备训练数据。训练数据可以使用指定了检测框的标签数据,样本之间的相对位置,这样就可以更加准确的预测出物体位置。
四、 训练模型。训练模型的关键就是参数的调节,要根据训练的结果不断优化参数,使得模型达到最佳效果,这里可以使用pytorch中内置成都网络模型进行训练,可以更加节省模型训练的时间。
五、测试模型。最后可以将训练好的模型进行测试,确保模型准确率满足要求,如果模型准确性不满足需求则可以进一步优化参数,确保模型能够满足要求。
总结:目标检测和跟踪是一项重要的技术,使用pytorch搭建这样一个高性能的模型,可以极大的提升实时的检测和跟踪的精准性,pytorch本身也有很多内置的网络参数,用户可以控制参数,调整模型以获得最佳的识别效果,用pytorch实现目标检测和跟踪可以使算法的效果更好。