GeoShapley算法:基于地理数据的Shapley值在空间效应测量中的应用——位置重要性与特征交互作用分析

机器学习大数据算法

picture.image

✨ 欢迎关注Python机器学习AI ✨

本节介绍:基于

《Annals of the American Association of Geographers》

中的GeoShapley算法,结合空间效应对机器学习模型预测结果的可视化分析,展示如何利用GeoShapley算法确定位置重要性及其与特征之间的交互作用,数据采用模拟数据无任何现实意义,作者根据个人对机器学习的理解进行代码实现与图表输出,细节并不保证与原文一定相同,仅供参考。

详细数据和代码将在稍后上传至交流群,付费群成员可在交流群中获取下载。需要的朋友可关注公众文末提供的购买方式。

购买前请咨询,避免不必要的问题。

✨ 论文信息 ✨

picture.image

论文原图

picture.image

✨ 模拟实现 ✨

picture.image

picture.image

✨ 论文解读 ✨

汇总图(论文原图)展示了特征重要性排名,并包含了GeoShapley值的汇总统计数据。位置(GEO)的贡献被确定为影响房屋价格的最重要特征,

住房特征,包括生活面积的平方英尺和等级,紧随其后,位置与住房属性之间存在交互作用,但其影响不如主要的非空间效应显着。例如,房屋年龄与位置之间存在一定的交互作用,表明年龄对房价的影响部分取决于房产的位置。

✨ 该文章案例 ✨

picture.image

在上传至交流群的文件中,像往期文章一样,将对案例进行逐步分析,确保读者能够达到最佳的学习效果。内容都经过详细解读,帮助读者深入理解模型的实现过程和数据分析步骤,从而最大化学习成果。

同时,结合提供的免费AI聚合网站进行学习,能够让读者在理论与实践之间实现融会贯通,更加全面地掌握核心概念。

✨ 购买介绍 ✨

本节介绍到此结束,有需要学习数据分析和Python机器学习相关的朋友欢迎到 淘宝店铺:Python机器学习AI,或添加作者微信deep_ML联系 ,购买作者的公众号合集。截至目前为止,合集已包含200多篇文章,购买合集的同时,还将提供免费稳定的AI大模型使用,包括但不限于ChatGPT、Deepseek、Claude等。

更新的内容包含数据、代码、注释和参考资料。

作者仅分享案例项目,不提供额外的答疑服务。项目中将提供详细的代码注释和丰富的解读,帮助您理解每个步骤

购买前请咨询,避免不必要的问题。

✨ 群友反馈 ✨

picture.image

✨ 淘宝店铺 ✨

picture.image

请大家打开淘宝扫描上方的二维码,进入店铺,获取更多Python机器学习和AI相关的内容,或者添加作者微信 deep_ML联系

避免淘宝客服漏掉信息

,希望能为您的学习之路提供帮助!

往期推荐

期刊配图:RFE结合随机森林与K折交叉验证的特征筛选可视化

期刊配图:变量重要性排序与顺序正向选择的特征筛选可视化

期刊配图:SHAP可视化改进依赖图+拟合线+边缘密度+分组对比

期刊配图:SHAP蜂巢图与柱状图多维组合解读特征对模型的影响

期刊配图:分类模型对比训练集与测试集评价指标的可视化分析

期刊配图:回归模型对比如何精美可视化训练集与测试集的评价指标

期刊配图:如何同时可视化多个回归模型在训练集与测试集上的预测效果

期刊配图:SHAP可视化进阶蜂巢图与特征重要性环形图的联合展示方法

期刊配图:基于t-sne降维与模型预测概率的分类效果可视化

期刊配图:多种机器学习算法在递归特征筛选中的性能变化图示

picture.image

如果你对类似于这样的文章感兴趣。

欢迎关注、点赞、转发~

个人观点,仅供参考

0
0
0
0
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论