本文是Agent面试题的第八辑,精选15道关于Agent高级技术的高频面试题,涵盖流式输出处理、并发处理、异步调用、负载均衡、扩展性设计、模型选择策略、模型切换、模型融合、增量学习、在线学习、强化学习应用、知识图谱集成、向量数据库应用、图数据库应用、时间序列处理等核心知识点,适合准备大模型应用岗位面试的同学。
字数约 15000,预计阅读 30 分钟
一、Agent性能优化篇(3题)
01|Agent 流式输出处理如何实现?有哪些技术要点和优化策略?
参考答案:
实现方式:
LLM流式生成
- • 使用支持流式输出的LLM API
- • 逐token返回结果
- • 实时展示给用户
工具调用流式处理
- • 工具执行结果流式返回
- • 边执行边返回
- • 提高用户体验
混合流式
- • 检索和生成并行流式
- • 结果逐步融合
- • 最优体验
技术要点:
流式API调用 流式Agent使用异步生成器逐Token返回响应。流式生成流程包括:流式生成思考过程、生成工具调用、执行工具(如果工具支持流式则流式返回结果)、流式生成最终回答。每个阶段通过yield返回数据块,客户端可以实时接收和展示。
WebSocket流式传输 使用WebSocket实现双向实时通信。服务器接受WebSocket连接后,接收用户消息,通过流式Agent生成响应,逐块发送给客户端。每个数据块包含类型和内容,最后发送完成信号。WebSocket支持双向通信,适合需要实时交互的场景。
SSE(Server-Sent Events)流式传输 使用SSE实现服务器向客户端的单向流式传输。SSE接口返回StreamingResponse,媒体类型为text/event-stream。每个数据块以"data: “开头,JSON格式包含内容,最后发送”[DONE]"表示完成。SSE实现简单,适合只需要服务器推送的场景。
优化策略:
缓冲优化
- • 小token合并发送,减少网络开销
- • 设置合理的缓冲区大小
- • 平衡延迟和吞吐量
错误处理
- • 流式过程中的错误恢复
- • 部分失败时的降级处理
- • 用户友好的错误提示
性能优化
- • 并行处理多个流
- • 使用连接池
- • 缓存中间结果
最佳实践:
- • 设置合理的流式粒度(token级别或chunk级别)
- • 处理流式中断和重连
- • 优化延迟和吞吐量平衡
- • 提供流式进度指示
- • 支持流式中断和取消
02|Agent 并发处理有哪些实现方式?如何设计高并发的 Agent 系统?
参考答案:
实现方式:
多进程并发
- • 使用进程池处理多个请求
- • 进程间隔离,稳定性高
- • 适合CPU密集型任务
多线程并发
- • 使用线程池处理请求
- • 共享内存,通信方便
- • 适合I/O密集型任务
异步并发
- • 使用asyncio异步处理
- • 单线程高并发
- • 适合高并发场景
分布式并发
- • 多机器分布式处理
- • 水平扩展
- • 适合大规模系统
设计要点:
异步架构设计
import asyncio
from typing importList, Dict
from concurrent.futures import ThreadPoolExecutor
classConcurrentAgent:
def\_\_init\_\_(self, llm, max\_workers=10):
self.llm = llm
self.executor = ThreadPoolExecutor(max\_workers=max\_workers)
self.semaphore = asyncio.Semaphore(max\_workers)
asyncdefprocess\_batch(self, queries: List[str]) -> List[Dict]:
"""批量并发处理"""
tasks = [self.process\_single(query) for query in queries]
results = await asyncio.gather(*tasks)
return results
asyncdefprocess\_single(self, query: str) -> Dict:
"""处理单个查询"""
asyncwithself.semaphore: # 控制并发数
# 异步调用LLM
response = awaitself.llm.agenerate(query)
# 异步执行工具
tool\_results = awaitself.execute\_tools\_async(response)
return {
"query": query,
"response": response,
"tool\_results": tool\_results
}
asyncdefexecute\_tools\_async(self, response):
"""异步执行工具"""
tool\_calls = self.extract\_tool\_calls(response)
tasks = [self.call\_tool\_async(tool) for tool in tool\_calls]
returnawait asyncio.gather(*tasks)
asyncdefcall\_tool\_async(self, tool\_call):
"""异步调用工具"""
returnawait asyncio.to\_thread(
self.tool\_registry.call,
tool\_call
)
消息队列架构
import asyncio
from asyncio import Queue
classMessageQueueAgent:
def\_\_init\_\_(self, worker\_count=5):
self.request\_queue = Queue()
self.response\_queue = Queue()
self.workers = []
self.worker\_count = worker\_count
asyncdefstart\_workers(self):
"""启动工作线程"""
for i inrange(self.worker\_count):
worker = asyncio.create\_task(
self.worker\_loop(f"worker-{i}")
)
self.workers.append(worker)
asyncdefworker\_loop(self, worker\_id: str):
"""工作循环"""
whileTrue:
request = awaitself.request\_queue.get()
try:
result = awaitself.process\_request(request)
awaitself.response\_queue.put({
"request\_id": request["id"],
"result": result
})
except Exception as e:
awaitself.response\_queue.put({
"request\_id": request["id"],
"error": str(e)
})
finally:
self.request\_queue.task\_done()
asyncdefsubmit\_request(self, query: str) -> str:
"""提交请求"""
request\_id = f"req-{asyncio.get\_event\_loop().time()}"
awaitself.request\_queue.put({
"id": request\_id,
"query": query
})
return request\_id
连接池管理
from aiohttp import ClientSession, TCPConnector
import asyncio
classPooledAgent:
def\_\_init\_\_(self, max\_connections=100):
self.connector = TCPConnector(limit=max\_connections)
self.session = None
asyncdef\_\_aenter\_\_(self):
self.session = ClientSession(connector=self.connector)
returnself
asyncdef\_\_aexit\_\_(self, *args):
awaitself.session.close()
asyncdefprocess\_concurrent(self, queries: List[str]):
"""并发处理"""
tasks = [
self.process\_with\_session(query)
for query in queries
]
returnawait asyncio.gather(*tasks)
asyncdefprocess\_with\_session(self, query: str):
"""使用连接池处理"""
asyncwithself.session.post(
"/api/llm/generate",
json={"query": query}
) as response:
returnawait response.json()
高并发设计原则:
资源管理
- • 连接池管理
- • 内存限制
- • CPU使用率控制
负载控制
- • 限流机制(Rate Limiting)
- • 背压处理(Backpressure)
- • 优先级队列
容错机制
- • 超时处理
- • 重试机制
- • 降级策略
最佳实践:
- • 使用异步I/O提高并发能力
- • 合理设置并发数(避免资源耗尽)
- • 实现请求队列和负载均衡
- • 监控系统资源使用情况
- • 实现优雅降级和熔断机制
03|Agent 异步调用如何实现?异步调用与同步调用的区别和适用场景是什么?
参考答案:
异步调用实现:
使用async/await
import asyncio
classAsyncAgent:
def\_\_init\_\_(self, llm):
self.llm = llm
asyncdefprocess\_async(self, query: str):
"""异步处理"""
# 异步调用LLM
response = awaitself.llm.agenerate(query)
# 异步执行工具
tool\_results = await asyncio.gather(*[
self.call\_tool\_async(tool)
for tool inself.extract\_tools(response)
])
return tool\_results
asyncdefcall\_tool\_async(self, tool\_call):
"""异步调用工具"""
# 模拟异步I/O操作
await asyncio.sleep(0.1) # 模拟网络延迟
returnf"Tool result for {tool\_call}"
异步工具注册
from typing importCallable, Awaitable
classAsyncToolRegistry:
def\_\_init\_\_(self):
self.tools: Dict[str, Callable[..., Awaitable]] = {}
defregister(self, name: str, func: Callable[..., Awaitable]):
"""注册异步工具"""
self.tools[name] = func
asyncdefcall(self, tool\_name: str, *args, **kwargs):
"""异步调用工具"""
if tool\_name notinself.tools:
raise ValueError(f"Tool {tool\_name} not found")
returnawaitself.tools[tool\_name](*args, **kwargs)
异步批处理
classAsyncBatchAgent:
asyncdefprocess\_batch(self, queries: List[str]):
"""异步批处理"""
# 创建任务列表
tasks = [self.process\_single(query) for query in queries]
# 并发执行
results = await asyncio.gather(*tasks, return\_exceptions=True)
# 处理结果
processed\_results = []
for i, result inenumerate(results):
ifisinstance(result, Exception):
processed\_results.append({
"query": queries[i],
"error": str(result)
})
else:
processed\_results.append({
"query": queries[i],
"result": result
})
return processed\_results
区别对比:
| 特性 | 同步调用 | 异步调用 | | --- | --- | --- | | 执行方式 | 顺序执行,阻塞等待 | 并发执行,非阻塞 | | 资源利用 | 低(等待I/O时CPU空闲) | 高(等待时处理其他任务) | | 并发能力 | 低(受线程/进程数限制) | 高(单线程可处理大量请求) | | 代码复杂度 | 简单直观 | 相对复杂(需要async/await) | | 适用场景 | CPU密集型、简单任务 | I/O密集型、高并发场景 | | 错误处理 | 简单(try/except) | 需要特殊处理(asyncio异常) |
适用场景:
异步调用适合:
- • 高并发场景 :大量用户同时请求
- • I/O密集型 :网络请求、数据库查询、文件读写
- • 实时系统 :需要快速响应的系统
- • 流式处理 :需要实时返回结果的场景
同步调用适合:
- • CPU密集型 :大量计算任务
- • 简单任务 :逻辑简单,不需要并发
- • 调试方便 :代码简单,易于调试
- • 资源受限 :单机资源有限的情况
混合使用:
classHybridAgent:
asyncdefprocess\_hybrid(self, query: str):
"""混合使用同步和异步"""
# 异步调用LLM(I/O操作)
response = awaitself.llm.agenerate(query)
# 同步处理数据(CPU密集型)
processed\_data = self.process\_data\_sync(response)
# 异步调用工具(I/O操作)
tool\_results = awaitself.call\_tools\_async(processed\_data)
return tool\_results
defprocess\_data\_sync(self, data):
"""同步处理(CPU密集型)"""
# 使用同步方法处理
return data.upper()
最佳实践:
- • I/O操作使用异步,CPU计算使用同步
- • 合理使用asyncio.gather提高并发
- • 设置合理的超时时间
- • 处理异步异常和取消操作
- • 使用连接池管理资源
二、Agent架构设计篇(3题)
04|Agent 负载均衡有哪些策略?如何实现 Agent 的负载均衡?
参考答案:
负载均衡策略:
轮询(Round Robin)
- • 按顺序分配请求
- • 简单公平
- • 不考虑服务器负载
加权轮询(Weighted Round Robin)
- • 根据服务器性能分配权重
- • 性能好的服务器处理更多请求
- • 适合服务器性能差异大的场景
最少连接(Least Connections)
- • 分配给连接数最少的服务器
- • 动态平衡负载
- • 适合长连接场景
响应时间(Response Time)
- • 根据响应时间选择服务器
- • 选择响应最快的服务器
- • 适合实时性要求高的场景
一致性哈希(Consistent Hashing)
- • 根据请求特征哈希分配
- • 相同请求总是分配到同一服务器
- • 适合需要会话保持的场景
实现方式:
应用层负载均衡
from typing importList
import random
import time
classLoadBalancer:
def\_\_init\_\_(self, agents: List[str], strategy="round\_robin"):
self.agents = agents
self.strategy = strategy
self.current\_index = 0
self.agent\_stats = {agent: {
"connections": 0,
"response\_time": 0,
"requests": 0
} for agent in agents}
defselect\_agent(self, request\_id: str = None) -> str:
"""选择Agent"""
ifself.strategy == "round\_robin":
returnself.\_round\_robin()
elifself.strategy == "least\_connections":
returnself.\_least\_connections()
elifself.strategy == "response\_time":
returnself.\_response\_time()
elifself.strategy == "consistent\_hash":
returnself.\_consistent\_hash(request\_id)
else:
return random.choice(self.agents)
def\_round\_robin(self) -> str:
"""轮询策略"""
agent = self.agents[self.current\_index]
self.current\_index = (self.current\_index + 1) % len(self.agents)
return agent
def\_least\_connections(self) -> str:
"""最少连接策略"""
returnmin(
self.agents,
key=lambda a: self.agent\_stats[a]["connections"]
)
def\_response\_time(self) -> str:
"""响应时间策略"""
returnmin(
self.agents,
key=lambda a: self.agent\_stats[a]["response\_time"]
)
def\_consistent\_hash(self, request\_id: str) -> str:
"""一致性哈希"""
ifnot request\_id:
request\_id = str(time.time())
hash\_value = hash(request\_id)
index = hash\_value % len(self.agents)
returnself.agents[index]
defupdate\_stats(self, agent: str, response\_time: float):
"""更新统计信息"""
stats = self.agent\_stats[agent]
stats["requests"] += 1
stats["response\_time"] = (
stats["response\_time"] * 0.9 + response\_time * 0.1
) # 指数移动平均
Nginx负载均衡配置
upstream agent\_backend {
# 轮询
server agent1:8000;
server agent2:8000;
server agent3:8000;
# 加权轮询
# server agent1:8000 weight=3;
# server agent2:8000 weight=2;
# server agent3:8000 weight=1;
# 最少连接
# least\_conn;
}
server {
listen80;
location / {
proxy\_pass http://agent\_backend;
proxy\_set\_header Host $host;
proxy\_set\_header X-Real-IP $remote\_addr;
}
}
健康检查机制
import asyncio
from typing importDict
classHealthCheckBalancer:
def\_\_init\_\_(self, agents: List[str]):
self.agents = agents
self.health\_status: Dict[str, bool] = {
agent: Truefor agent in agents
}
self.check\_interval = 30# 30秒检查一次
asyncdefstart\_health\_check(self):
"""启动健康检查"""
whileTrue:
await asyncio.gather(*[
self.check\_agent\_health(agent)
for agent inself.agents
])
await asyncio.sleep(self.check\_interval)
asyncdefcheck\_agent\_health(self, agent: str):
"""检查Agent健康状态"""
try:
# 发送健康检查请求
response = awaitself.ping\_agent(agent)
self.health\_status[agent] = response.status == 200
except Exception:
self.health\_status[agent] = False
defget\_healthy\_agents(self) -> List[str]:
"""获取健康的Agent列表"""
return [
agent for agent, healthy inself.health\_status.items()
if healthy
]
defselect\_agent(self) -> str:
"""从健康Agent中选择"""
healthy\_agents = self.get\_healthy\_agents()
ifnot healthy\_agents:
raise Exception("No healthy agents available")
return random.choice(healthy\_agents)
最佳实践:
- • 实现健康检查,自动剔除故障节点
- • 使用多种策略组合(如健康检查+最少连接)
- • 监控各节点的负载情况
- • 实现动态权重调整
- • 支持会话保持(一致性哈希)
05|Agent 扩展性设计有哪些原则?如何设计可扩展的 Agent 架构?
参考答案:
扩展性原则:
模块化设计
- • 组件独立,职责单一
- • 接口清晰,易于替换
- • 松耦合,高内聚
水平扩展
- • 支持多实例部署
- • 无状态设计
- • 易于横向扩展
插件化架构
- • 工具可插拔
- • 功能可扩展
- • 配置驱动
分层架构
- • 清晰的层次划分
- • 每层独立扩展
- • 接口标准化
架构设计:
微服务架构
# Agent核心服务
classAgentCoreService:
def\_\_init\_\_(self):
self.tool\_registry = ToolRegistry()
self.memory\_service = MemoryServiceClient()
self.llm\_service = LLMServiceClient()
asyncdefprocess(self, request):
# 1. 获取上下文
context = awaitself.memory\_service.get\_context(
request.conversation\_id
)
# 2. 生成计划
plan = awaitself.llm\_service.generate\_plan(
request.query, context
)
# 3. 执行工具
results = awaitself.execute\_tools(plan)
# 4. 生成响应
response = awaitself.llm\_service.generate\_response(
request.query, context, results
)
return response
插件化工具系统
from abc import ABC, abstractmethod
from typing importDict, Any
classTool(ABC):
"""工具基类"""
@abstractmethod
defname(self) -> str:
"""工具名称"""
pass
@abstractmethod
defdescription(self) -> str:
"""工具描述"""
pass
@abstractmethod
asyncdefexecute(self, params: Dict[str, Any]) -> Any:
"""执行工具"""
pass
classToolRegistry:
"""工具注册表"""
def\_\_init\_\_(self):
self.tools: Dict[str, Tool] = {}
defregister(self, tool: Tool):
"""注册工具"""
self.tools[tool.name()] = tool
defget\_tool(self, name: str) -> Tool:
"""获取工具"""
returnself.tools.get(name)
deflist\_tools(self) -> List[str]:
"""列出所有工具"""
returnlist(self.tools.keys())
# 使用示例
classSearchTool(Tool):
defname(self) -> str:
return"search"
defdescription(self) -> str:
return"搜索工具"
asyncdefexecute(self, params: Dict[str, Any]) -> Any:
query = params.get("query")
returnawaitself.search(query)
配置驱动架构
from dataclasses import dataclass
from typing importList, Optional
@dataclass
classAgentConfig:
"""Agent配置"""
llm\_model: str
tools: List[str]
memory\_type: str
max\_iterations: int
temperature: float
classConfigurableAgent:
def\_\_init\_\_(self, config: AgentConfig):
self.config = config
self.llm = self.\_init\_llm(config.llm\_model)
self.tools = self.\_init\_tools(config.tools)
self.memory = self.\_init\_memory(config.memory\_type)
def\_init\_llm(self, model: str):
"""初始化LLM"""
# 根据配置初始化不同的LLM
if model == "gpt-4":
return GPT4LLM()
elif model == "claude":
return ClaudeLLM()
else:
return DefaultLLM()
def\_init\_tools(self, tool\_names: List[str]):
"""初始化工具"""
registry = ToolRegistry()
for name in tool\_names:
tool = self.\_create\_tool(name)
registry.register(tool)
return registry
def\_init\_memory(self, memory\_type: str):
"""初始化记忆"""
if memory\_type == "buffer":
return BufferMemory()
elif memory\_type == "vector":
return VectorMemory()
else:
return DefaultMemory()
事件驱动架构
from typing importCallable, Dict
from enum import Enum
classEventType(Enum):
TOOL\_CALL = "tool\_call"
TOOL\_RESULT = "tool\_result"
LLM\_REQUEST = "llm\_request"
LLM\_RESPONSE = "llm\_response"
classEventBus:
"""事件总线"""
def\_\_init\_\_(self):
self.handlers: Dict[EventType, List[Callable]] = {}
defsubscribe(self, event\_type: EventType, handler: Callable):
"""订阅事件"""
if event\_type notinself.handlers:
self.handlers[event\_type] = []
self.handlers[event\_type].append(handler)
defpublish(self, event\_type: EventType, data: Any):
"""发布事件"""
if event\_type inself.handlers:
for handler inself.handlers[event\_type]:
handler(data)
classEventDrivenAgent:
def\_\_init\_\_(self, event\_bus: EventBus):
self.event\_bus = event\_bus
self.\_setup\_handlers()
def\_setup\_handlers(self):
"""设置事件处理器"""
self.event\_bus.subscribe(
EventType.TOOL\_CALL,
self.on\_tool\_call
)
self.event\_bus.subscribe(
EventType.TOOL\_RESULT,
self.on\_tool\_result
)
扩展性考虑:
水平扩展
- • 无状态设计
- • 共享状态外部化(Redis、数据库)
- • 支持多实例部署
垂直扩展
- • 组件可独立升级
- • 支持功能增强
- • 向后兼容
功能扩展
- • 插件机制
- • 工具可插拔
- • 配置驱动
最佳实践:
- • 采用微服务架构,组件独立部署
- • 使用接口抽象,便于替换实现
- • 实现插件机制,支持功能扩展
- • 配置外部化,支持动态调整
- • 设计清晰的API,便于集成
06|Agent 模型选择策略有哪些?如何根据任务特点选择合适的模型?
参考答案:
选择策略:
基于任务类型
- • 文本生成 → GPT系列
- • 代码生成 → Codex、StarCoder
- • 对话任务 → ChatGPT、Claude
- • 多模态 → GPT-4V、Gemini
基于性能要求
- • 高精度 → 大模型(GPT-4、Claude-3)
- • 快速响应 → 小模型(GPT-3.5、Llama)
- • 成本敏感 → 开源模型(Llama、Mistral)
基于上下文长度
- • 长上下文 → GPT-4 Turbo、Claude-3
- • 短上下文 → GPT-3.5、Llama-2
动态选择
- • 根据查询复杂度选择
- • 根据历史性能选择
- • A/B测试选择最优模型
实现方式:
模型路由器
from typing importDict, List
from enum import Enum
classTaskType(Enum):
SIMPLE\_QA = "simple\_qa"
COMPLEX\_REASONING = "complex\_reasoning"
CODE\_GENERATION = "code\_generation"
MULTIMODAL = "multimodal"
classModelRouter:
def\_\_init\_\_(self):
self.models = {
"gpt-4": GPT4Model(),
"gpt-3.5": GPT35Model(),
"claude-3": Claude3Model(),
"codex": CodexModel()
}
self.routing\_rules = {
TaskType.SIMPLE\_QA: ["gpt-3.5"],
TaskType.COMPLEX\_REASONING: ["gpt-4", "claude-3"],
TaskType.CODE\_GENERATION: ["codex", "gpt-4"],
TaskType.MULTIMODAL: ["gpt-4", "claude-3"]
}
defselect\_model(self, task\_type: TaskType, query: str) -> str:
"""选择模型"""
# 1. 根据任务类型选择候选模型
candidates = self.routing\_rules.get(task\_type, ["gpt-3.5"])
# 2. 根据查询复杂度进一步筛选
complexity = self.analyze\_complexity(query)
if complexity > 0.7:
# 复杂任务选择大模型
return"gpt-4"if"gpt-4"in candidates else candidates[0]
else:
# 简单任务选择小模型
return candidates[0]
defanalyze\_complexity(self, query: str) -> float:
"""分析查询复杂度"""
# 简化的复杂度分析
factors = {
"长度": len(query) / 1000, # 归一化
"关键词": self.count\_keywords(query),
"嵌套": self.count\_nesting(query)
}
returnsum(factors.values()) / len(factors)
性能驱动的模型选择
classPerformanceBasedRouter:
def\_\_init\_\_(self):
self.models = {...}
self.performance\_stats = {
model: {
"accuracy": 0.0,
"latency": 0.0,
"cost": 0.0,
"requests": 0
}
for model inself.models.keys()
}
defselect\_model(self, task\_type: TaskType) -> str:
"""基于性能选择模型"""
# 计算每个模型的综合得分
scores = {}
for model, stats inself.performance\_stats.items():
score = (
stats["accuracy"] * 0.5 +
(1 / stats["latency"]) * 0.3 +
(1 / stats["cost"]) * 0.2
)
scores[model] = score
# 选择得分最高的模型
returnmax(scores, key=scores.get)
defupdate\_stats(self, model: str, accuracy: float,
latency: float, cost: float):
"""更新性能统计"""
stats = self.performance\_stats[model]
stats["requests"] += 1
# 指数移动平均更新
alpha = 0.1
stats["accuracy"] = (
stats["accuracy"] * (1 - alpha) + accuracy * alpha
)
stats["latency"] = (
stats["latency"] * (1 - alpha) + latency * alpha
)
stats["cost"] = (
stats["cost"] * (1 - alpha) + cost * alpha
)
A/B测试模型选择
classABTestRouter:
def\_\_init\_\_(self):
self.models = {...}
self.test\_configs = {
"experiment\_1": {
"models": ["gpt-4", "claude-3"],
"traffic\_split": 0.5, # 50%流量
"metrics": ["accuracy", "user\_satisfaction"]
}
}
defselect\_model(self, user\_id: str, task\_type: TaskType) -> str:
"""A/B测试选择模型"""
# 根据用户ID决定进入哪个实验组
experiment = self.get\_experiment(user\_id)
if experiment:
returnself.select\_for\_experiment(user\_id, experiment)
else:
returnself.select\_default(task\_type)
defget\_experiment(self, user\_id: str) -> Optional[str]:
"""获取用户所属实验"""
# 基于用户ID哈希决定
hash\_value = hash(user\_id)
for exp\_id, config inself.test\_configs.items():
if hash\_value % 100 < config["traffic\_split"] * 100:
return exp\_id
returnNone
选择决策树:
任务类型
├── 简单问答
│ └── GPT-3.5(快速、低成本)
├── 复杂推理
│ └── GPT-4 / Claude-3(高精度)
├── 代码生成
│ └── Codex / GPT-4(专业能力)
└── 多模态
└── GPT-4V / Gemini(多模态支持)
最佳实践:
- • 建立模型性能监控系统
- • 根据任务特点建立选择规则
- • 实现动态模型切换机制
- • 进行A/B测试优化选择策略
- • 考虑成本、延迟、精度的平衡
三、Agent模型管理篇(3题)
07|Agent 模型切换如何实现?如何实现无缝的模型切换?
参考答案:
切换策略:
热切换(Hot Swap)
- • 运行时切换模型
- • 无需重启服务
- • 支持灰度切换
版本切换
- • 通过版本号管理模型
- • 支持回滚
- • 多版本共存
渐进式切换
- • 逐步增加新模型流量
- • 监控性能指标
- • 确认稳定后完全切换
实现方式:
模型管理器
from typing importDict, Optional
from threading import Lock
classModelManager:
def\_\_init\_\_(self):
self.models: Dict[str, Any] = {}
self.current\_model: Optional[str] = None
self.lock = Lock()
self.switch\_callbacks = []
defregister\_model(self, model\_id: str, model: Any):
"""注册模型"""
withself.lock:
self.models[model\_id] = model
defswitch\_model(self, new\_model\_id: str, graceful: bool = True):
"""切换模型"""
if new\_model\_id notinself.models:
raise ValueError(f"Model {new\_model\_id} not found")
if graceful:
# 优雅切换:等待当前请求完成
self.\_graceful\_switch(new\_model\_id)
else:
# 立即切换
withself.lock:
self.current\_model = new\_model\_id
# 触发回调
for callback inself.switch\_callbacks:
callback(new\_model\_id)
def\_graceful\_switch(self, new\_model\_id: str):
"""优雅切换"""
# 1. 标记新模型为待切换
# 2. 等待当前请求完成
# 3. 切换模型
# 4. 清理旧模型资源(可选)
withself.lock:
self.current\_model = new\_model\_id
defget\_model(self, model\_id: Optional[str] = None):
"""获取模型"""
target\_id = model\_id orself.current\_model
if target\_id notinself.models:
raise ValueError(f"Model {target\_id} not found")
returnself.models[target\_id]
版本管理切换
classVersionedModelManager:
def\_\_init\_\_(self):
self.versions: Dict[str, Dict] = {}
self.current\_version: Optional[str] = None
defadd\_version(self, version: str, model: Any, config: Dict):
"""添加模型版本"""
self.versions[version] = {
"model": model,
"config": config,
"traffic": 0.0, # 流量比例
"status": "active"# active, deprecated, testing
}
defswitch\_version(self, new\_version: str,
traffic\_ratio: float = 1.0):
"""切换版本"""
if new\_version notinself.versions:
raise ValueError(f"Version {new\_version} not found")
# 设置流量比例
self.versions[new\_version]["traffic"] = traffic\_ratio
# 如果流量比例为1.0,设置为当前版本
if traffic\_ratio >= 1.0:
self.current\_version = new\_version
defselect\_model(self, request\_id: str) -> Any:
"""根据流量分配选择模型"""
# 根据请求ID哈希决定使用哪个版本
hash\_value = hash(request\_id) % 100
cumulative = 0
for version, info inself.versions.items():
if info["status"] != "active":
continue
cumulative += info["traffic"] * 100
if hash\_value < cumulative:
return info["model"]
# 默认返回当前版本
returnself.versions[self.current\_version]["model"]
灰度切换
classGradualModelSwitcher:
def\_\_init\_\_(self):
self.old\_model: Optional[Any] = None
self.new\_model: Optional[Any] = None
self.switch\_ratio = 0.0# 0.0-1.0
self.metrics = {
"old\_model": {"success": 0, "total": 0},
"new\_model": {"success": 0, "total": 0}
}
defstart\_switch(self, old\_model: Any, new\_model: Any):
"""开始切换"""
self.old\_model = old\_model
self.new\_model = new\_model
self.switch\_ratio = 0.1# 从10%开始
defselect\_model(self, request\_id: str) -> Any:
"""选择模型"""
hash\_value = hash(request\_id) % 100
if hash\_value < self.switch\_ratio * 100:
returnself.new\_model
else:
returnself.old\_model
defupdate\_switch\_ratio(self, success\_rate\_threshold: float = 0.95):
"""更新切换比例"""
new\_rate = self.metrics["new\_model"]["success"] / max(
self.metrics["new\_model"]["total"], 1
)
if new\_rate >= success\_rate\_threshold:
# 新模型表现良好,增加流量
self.switch\_ratio = min(self.switch\_ratio + 0.1, 1.0)
else:
# 新模型表现不佳,减少流量或回滚
self.switch\_ratio = max(self.switch\_ratio - 0.1, 0.0)
defrecord\_result(self, model\_type: str, success: bool):
"""记录结果"""
self.metrics[model\_type]["total"] += 1
if success:
self.metrics[model\_type]["success"] += 1
无缝切换实现
classSeamlessModelSwitcher:
def\_\_init\_\_(self):
self.models = {}
self.active\_model = None
self.pending\_requests = set()
self.request\_lock = Lock()
asyncdefprocess\_with\_switch(self, query: str,
new\_model\_id: Optional[str] = None):
"""处理请求,支持切换"""
request\_id = id(query)
# 如果指定了新模型,准备切换
if new\_model\_id:
awaitself.prepare\_switch(new\_model\_id)
# 获取当前模型
model = self.get\_active\_model()
# 记录请求
withself.request\_lock:
self.pending\_requests.add(request\_id)
try:
# 处理请求
result = await model.process(query)
return result
finally:
# 清理请求记录
withself.request\_lock:
self.pending\_requests.discard(request\_id)
# 如果准备切换且无待处理请求,执行切换
if new\_model\_id andlen(self.pending\_requests) == 0:
awaitself.execute\_switch(new\_model\_id)
asyncdefprepare\_switch(self, new\_model\_id: str):
"""准备切换"""
# 预加载新模型
if new\_model\_id notinself.models:
self.models[new\_model\_id] = awaitself.load\_model(new\_model\_id)
asyncdefexecute\_switch(self, new\_model\_id: str):
"""执行切换"""
# 等待所有请求完成
whilelen(self.pending\_requests) > 0:
await asyncio.sleep(0.1)
# 切换模型
self.active\_model = self.models[new\_model\_id]
最佳实践:
- • 实现优雅切换,等待当前请求完成
- • 支持灰度切换,逐步增加新模型流量
- • 监控切换过程中的性能指标
- • 实现快速回滚机制
- • 记录切换日志,便于问题排查
08|Agent 模型融合有哪些方法?如何将多个模型融合提升性能?
参考答案:
融合方法:
投票融合(Voting Ensemble)
- • 多个模型独立生成结果
- • 投票选择最终结果
- • 适合分类任务
加权融合(Weighted Ensemble)
- • 根据模型性能分配权重
- • 加权平均结果
- • 适合回归和生成任务
堆叠融合(Stacking)
- • 使用元模型学习如何融合
- • 训练融合策略
- • 性能最优但复杂度高
动态融合(Dynamic Ensemble)
- • 根据输入特征选择模型
- • 自适应融合策略
- • 平衡性能和效率
实现方式:
投票融合
from typing importList, Dict
from collections import Counter
classVotingEnsemble:
def\_\_init\_\_(self, models: List[Any]):
self.models = models
asyncdefpredict(self, query: str) -> str:
"""投票预测"""
# 所有模型独立预测
predictions = await asyncio.gather(*[
model.predict(query) for model inself.models
])
# 投票选择
vote\_counts = Counter(predictions)
return vote\_counts.most\_common(1)[0][0]
asyncdefpredict\_with\_confidence(self, query: str) -> Dict:
"""带置信度的预测"""
predictions = await asyncio.gather(*[
model.predict\_with\_confidence(query)
for model inself.models
])
# 加权投票
weighted\_votes = {}
for pred, conf in predictions:
weighted\_votes[pred] = (
weighted\_votes.get(pred, 0) + conf
)
best\_pred = max(weighted\_votes, key=weighted\_votes.get)
return {
"prediction": best\_pred,
"confidence": weighted\_votes[best\_pred] / len(self.models)
}
加权融合
classWeightedEnsemble:
def\_\_init\_\_(self, models: List[Any], weights: List[float]):
self.models = models
self.weights = weights
# 归一化权重
total = sum(weights)
self.weights = [w / total for w in weights]
asyncdefgenerate(self, query: str) -> str:
"""加权生成"""
# 获取所有模型的生成结果
results = await asyncio.gather(*[
model.generate(query) for model inself.models
])
# 如果是文本生成,使用重排序
ifself.is\_text\_generation():
returnself.rerank\_results(results, query)
else:
# 如果是数值结果,加权平均
returnself.weighted\_average(results)
defrerank\_results(self, results: List[str], query: str) -> str:
"""重排序结果"""
# 使用交叉编码器或LLM重排序
scores = []
for result in results:
score = self.compute\_relevance(result, query)
scores.append(score)
# 加权选择
weighted\_scores = [
score * weight
for score, weight inzip(scores, self.weights)
]
best\_idx = weighted\_scores.index(max(weighted\_scores))
return results[best\_idx]
堆叠融合
classStackingEnsemble:
def\_\_init\_\_(self, base\_models: List[Any], meta\_model: Any):
self.base\_models = base\_models
self.meta\_model = meta\_model
self.is\_trained = False
deftrain(self, X\_train, y\_train, X\_val, y\_val):
"""训练堆叠模型"""
# 1. 训练基础模型
base\_predictions = []
for model inself.base\_models:
model.train(X\_train, y\_train)
pred = model.predict(X\_val)
base\_predictions.append(pred)
# 2. 构建元特征
meta\_features = np.column\_stack(base\_predictions)
# 3. 训练元模型
self.meta\_model.train(meta\_features, y\_val)
self.is\_trained = True
asyncdefpredict(self, query: str) -> str:
"""预测"""
ifnotself.is\_trained:
raise ValueError("Model not trained")
# 1. 基础模型预测
base\_preds = await asyncio.gather(*[
model.predict(query) for model inself.base\_models
])
# 2. 元模型融合
meta\_features = np.array([base\_preds])
final\_pred = self.meta\_model.predict(meta\_features)
return final\_pred
动态融合
classDynamicEnsemble:
def\_\_init\_\_(self, models: Dict[str, Any]):
self.models = models
self.performance\_tracker = {
name: {"accuracy": 0.0, "latency": 0.0}
for name in models.keys()
}
asyncdefpredict(self, query: str) -> str:
"""动态选择模型"""
# 1. 分析查询特征
features = self.analyze\_query(query)
# 2. 选择最适合的模型
selected\_models = self.select\_models(features)
# 3. 融合结果
iflen(selected\_models) == 1:
returnawait selected\_models[0].predict(query)
else:
returnawaitself.fuse\_results(
selected\_models, query
)
defselect\_models(self, features: Dict) -> List[Any]:
"""选择模型"""
# 根据查询复杂度、长度等特征选择
if features["complexity"] > 0.7:
# 复杂查询使用大模型
return [self.models["gpt-4"]]
elif features["length"] > 1000:
# 长文本使用长上下文模型
return [self.models["claude-3"]]
else:
# 简单查询使用多个小模型融合
return [
self.models["gpt-3.5"],
self.models["llama-2"]
]
asyncdeffuse\_results(self, models: List[Any],
query: str) -> str:
"""融合多个模型结果"""
results = await asyncio.gather(*[
model.predict(query) for model in models
])
# 使用一致性检查
ifself.check\_consistency(results):
# 结果一致,返回任意一个
return results[0]
else:
# 结果不一致,使用置信度选择
returnself.select\_by\_confidence(models, results, query)
融合策略选择:
- • 简单任务 :投票融合,快速高效
- • 复杂任务 :加权融合,考虑模型性能
- • 高精度要求 :堆叠融合,最优性能
- • 动态场景 :动态融合,自适应选择
最佳实践:
- • 选择互补的模型(不同架构、不同训练数据)
- • 根据任务特点选择融合方法
- • 监控各模型的性能,动态调整权重
- • 考虑融合的计算成本
- • 实现A/B测试验证融合效果
09|Agent 增量学习如何实现?增量学习与全量学习的区别是什么?
参考答案:
区别对比:
| 特性 | 增量学习 | 全量学习 | | --- | --- | --- | | 训练数据 | 只使用新数据 | 使用所有历史数据 | | 训练时间 | 短(只训练新数据) | 长(训练所有数据) | | 存储需求 | 低(不存储历史数据) | 高(存储所有数据) | | 计算资源 | 少 | 多 | | 遗忘问题 | 可能存在(灾难性遗忘) | 不存在 | | 适应性 | 高(快速适应新数据) | 低(需要重新训练) | | 适用场景 | 数据流、在线学习 | 批量更新、离线训练 |
实现方式:
参数微调增量学习
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
classIncrementalLearner:
def\_\_init\_\_(self, model: nn.Module, learning\_rate: float = 1e-5):
self.model = model
self.optimizer = torch.optim.Adam(
model.parameters(), lr=learning\_rate
)
self.memory\_buffer = [] # 经验回放缓冲区
deflearn\_incremental(self, new\_data: DataLoader,
epochs: int = 1):
"""增量学习"""
# 1. 将新数据加入缓冲区
self.update\_memory\_buffer(new\_data)
# 2. 从缓冲区采样训练
for epoch inrange(epochs):
# 混合新旧数据
batch = self.sample\_from\_buffer()
# 前向传播
loss = self.compute\_loss(batch)
# 反向传播
self.optimizer.zero\_grad()
loss.backward()
self.optimizer.step()
defupdate\_memory\_buffer(self, new\_data: DataLoader):
"""更新经验回放缓冲区"""
for batch in new\_data:
self.memory\_buffer.append(batch)
# 限制缓冲区大小
max\_size = 10000
iflen(self.memory\_buffer) > max\_size:
self.memory\_buffer = self.memory\_buffer[-max\_size:]
defsample\_from\_buffer(self, batch\_size: int = 32):
"""从缓冲区采样"""
# 混合新旧数据
old\_samples = random.sample(
self.memory\_buffer[:-len(new\_data)],
batch\_size // 2
)
new\_samples = random.sample(
self.memory\_buffer[-len(new\_data):],
batch\_size // 2
)
return old\_samples + new\_samples
LoRA增量学习
classLoRAIncrementalLearning:
def\_\_init\_\_(self, base\_model, lora\_config):
self.base\_model = base\_model
self.lora\_adapters = {} # 存储不同任务的LoRA适配器
self.lora\_config = lora\_config
defadd\_task(self, task\_name: str, new\_data: DataLoader):
"""为任务添加LoRA适配器"""
# 1. 创建新的LoRA适配器
lora\_adapter = self.create\_lora\_adapter(
self.base\_model, self.lora\_config
)
# 2. 在新数据上微调
self.finetune\_lora(lora\_adapter, new\_data)
# 3. 保存适配器
self.lora\_adapters[task\_name] = lora\_adapter
defpredict(self, query: str, task\_name: str):
"""使用任务特定的适配器预测"""
adapter = self.lora\_adapters.get(task\_name)
if adapter:
# 激活适配器
self.activate\_adapter(adapter)
returnself.base\_model.predict(query)
知识蒸馏增量学习
classKnowledgeDistillationIncremental:
def\_\_init\_\_(self, teacher\_model, student\_model):
self.teacher\_model = teacher\_model
self.student\_model = student\_model
self.temperature = 3.0# 蒸馏温度
defincremental\_train(self, new\_data: DataLoader):
"""增量学习(知识蒸馏)"""
for batch in new\_data:
# 1. 教师模型预测(旧知识)
with torch.no\_grad():
teacher\_logits = self.teacher\_model(batch)
# 2. 学生模型预测(学习新数据)
student\_logits = self.student\_model(batch)
# 3. 计算蒸馏损失
distillation\_loss = self.distillation\_loss(
teacher\_logits, student\_logits
)
# 4. 计算任务损失(新数据)
task\_loss = self.task\_loss(student\_logits, batch.labels)
# 5. 总损失
total\_loss = (
0.5 * distillation\_loss +
0.5 * task\_loss
)
# 6. 反向传播
total\_loss.backward()
self.optimizer.step()
defdistillation\_loss(self, teacher\_logits, student\_logits):
"""蒸馏损失"""
# 使用KL散度
teacher\_probs = F.softmax(teacher\_logits / self.temperature, dim=-1)
student\_log\_probs = F.log\_softmax(
student\_logits / self.temperature, dim=-1
)
return F.kl\_div(student\_log\_probs, teacher\_probs, reduction='batchmean')
弹性权重巩固(EWC)
classEWCIncrementalLearning:
def\_\_init\_\_(self, model):
self.model = model
self.fisher\_matrix = {} # Fisher信息矩阵
self.optimal\_params = {} # 最优参数
defcompute\_fisher(self, data\_loader: DataLoader):
"""计算Fisher信息矩阵"""
self.model.eval()
fisher = {}
for name, param inself.model.named\_parameters():
fisher[name] = torch.zeros\_like(param)
for batch in data\_loader:
self.model.zero\_grad()
output = self.model(batch)
loss = self.compute\_loss(output, batch.labels)
loss.backward()
for name, param inself.model.named\_parameters():
if param.grad isnotNone:
fisher[name] += param.grad.data ** 2
# 平均
for name in fisher:
fisher[name] /= len(data\_loader)
self.fisher\_matrix = fisher
self.optimal\_params = {
name: param.clone()
for name, param inself.model.named\_parameters()
}
defewc\_loss(self, lambda\_ewc: float = 1000.0):
"""EWC损失(防止遗忘)"""
loss = 0
for name, param inself.model.named\_parameters():
if name inself.fisher\_matrix:
optimal = self.optimal\_params[name]
fisher = self.fisher\_matrix[name]
loss += (fisher * (param - optimal) ** 2).sum()
return lambda\_ewc * loss
defincremental\_train(self, new\_data: DataLoader):
"""增量训练"""
for batch in new\_data:
# 任务损失
task\_loss = self.task\_loss(batch)
# EWC损失(防止遗忘)
ewc\_loss = self.ewc\_loss()
# 总损失
total\_loss = task\_loss + ewc\_loss
total\_loss.backward()
self.optimizer.step()
最佳实践:
- • 使用经验回放缓解灾难性遗忘
- • 采用LoRA等参数高效方法
- • 实现知识蒸馏保留旧知识
- • 使用EWC等正则化方法
- • 定期评估模型性能,检测遗忘
四、Agent学习机制篇(3题)
10|Agent 在线学习如何实现?在线学习与离线学习的区别和适用场景是什么?
参考答案:
区别对比:
| 特性 | 在线学习 | 离线学习 | | --- | --- | --- | | 训练时机 | 实时,数据到达即训练 | 批量,定期训练 | | 数据使用 | 逐样本或小批量 | 全量数据 | | 模型更新 | 持续更新 | 定期更新 | | 响应速度 | 快速适应新数据 | 需要重新训练 | | 计算资源 | 分散,持续使用 | 集中,批量使用 | | 适用场景 | 数据流、实时系统 | 批量数据、定期更新 |
实现方式:
在线梯度下降
classOnlineLearner:
def\_\_init\_\_(self, model, learning\_rate: float = 0.01):
self.model = model
self.optimizer = torch.optim.SGD(
model.parameters(), lr=learning\_rate
)
deflearn\_online(self, sample):
"""在线学习单个样本"""
# 1. 前向传播
prediction = self.model(sample.input)
# 2. 计算损失
loss = self.compute\_loss(prediction, sample.label)
# 3. 反向传播
self.optimizer.zero\_grad()
loss.backward()
self.optimizer.step()
return loss.item()
deflearn\_mini\_batch(self, batch):
"""小批量在线学习"""
# 处理小批量数据
predictions = self.model(batch.inputs)
loss = self.compute\_loss(predictions, batch.labels)
self.optimizer.zero\_grad()
loss.backward()
self.optimizer.step()
return loss.item()
流式数据处理
import asyncio
from queue import Queue
classStreamingOnlineLearner:
def\_\_init\_\_(self, model, batch\_size: int = 32):
self.model = model
self.batch\_size = batch\_size
self.data\_queue = Queue()
self.is\_training = False
asyncdefstart\_online\_learning(self):
"""启动在线学习"""
self.is\_training = True
whileself.is\_training:
# 收集批量数据
batch = awaitself.collect\_batch()
if batch:
# 训练
loss = self.train\_batch(batch)
print(f"Batch loss: {loss}")
await asyncio.sleep(0.1)
asyncdefcollect\_batch(self):
"""收集批量数据"""
batch = []
whilelen(batch) < self.batch\_size:
try:
sample = self.data\_queue.get\_nowait()
batch.append(sample)
except:
break
return batch if batch elseNone
defadd\_sample(self, sample):
"""添加新样本"""
self.data\_queue.put(sample)
自适应学习率
classAdaptiveOnlineLearner:
def\_\_init\_\_(self, model):
self.model = model
self.optimizer = torch.optim.Adam(model.parameters())
self.performance\_history = []
deflearn\_with\_adaptation(self, sample):
"""自适应在线学习"""
# 1. 学习
loss = self.learn\_online(sample)
# 2. 评估性能
performance = self.evaluate\_performance()
self.performance\_history.append(performance)
# 3. 自适应调整学习率
iflen(self.performance\_history) > 10:
ifself.performance\_declining():
# 性能下降,降低学习率
self.adjust\_learning\_rate(0.9)
elifself.performance\_stable():
# 性能稳定,增加学习率
self.adjust\_learning\_rate(1.1)
defadjust\_learning\_rate(self, factor: float):
"""调整学习率"""
for param\_group inself.optimizer.param\_groups:
param\_group['lr'] *= factor
在线学习Agent
classOnlineLearningAgent:
def\_\_init\_\_(self, llm, learner):
self.llm = llm
self.learner = learner
self.interaction\_history = []
asyncdefinteract\_and\_learn(self, user\_input: str):
"""交互并学习"""
# 1. 生成响应
response = awaitself.llm.generate(user\_input)
# 2. 获取用户反馈
feedback = awaitself.get\_user\_feedback(response)
# 3. 记录交互
self.interaction\_history.append({
"input": user\_input,
"response": response,
"feedback": feedback
})
# 4. 在线学习
if feedback["is\_positive"]:
# 正反馈,强化当前策略
self.learner.reinforce(user\_input, response)
else:
# 负反馈,调整策略
self.learner.adjust(user\_input, response, feedback)
return response
适用场景:
在线学习适合:
- • 数据流系统 :实时数据不断到达
- • 个性化推荐 :根据用户行为实时调整
- • A/B测试 :实时优化策略
- • 异常检测 :快速适应新异常模式
离线学习适合:
- • 批量数据处理 :定期收集数据后训练
- • 模型版本管理 :需要稳定版本
- • 资源受限 :无法持续训练
- • 合规要求 :需要审核训练数据
最佳实践:
- • 实现小批量处理,平衡效率和实时性
- • 使用自适应学习率,快速收敛
- • 监控模型性能,及时发现问题
- • 实现回滚机制,防止性能下降
- • 平衡新旧数据,避免过拟合新数据
11|Agent 强化学习应用有哪些场景?如何将强化学习应用到 Agent 中?
参考答案:
应用场景:
工具选择优化
- • 学习在什么情况下选择哪个工具
- • 根据历史成功率优化选择策略
- • 提高工具调用的准确性
对话策略优化
- • 学习如何更好地与用户交互
- • 优化对话流程和话术
- • 提高用户满意度
任务规划优化
- • 学习如何分解和规划任务
- • 优化执行顺序
- • 提高任务完成率
参数调优
- • 学习最优的模型参数
- • 优化temperature、top_p等参数
- • 提高生成质量
实现方式:
RLHF(人类反馈强化学习)
classRLHFAgent:
def\_\_init\_\_(self, base\_model, reward\_model):
self.base\_model = base\_model
self.reward\_model = reward\_model
self.policy = self.create\_policy()
deftrain\_with\_feedback(self, queries, human\_feedback):
"""使用人类反馈训练"""
for query, feedback inzip(queries, human\_feedback):
# 1. 生成响应
response = self.policy.generate(query)
# 2. 计算奖励
reward = self.reward\_model.compute\_reward(
query, response, feedback
)
# 3. 更新策略
self.policy.update(query, response, reward)
defcreate\_policy(self):
"""创建策略网络"""
# 使用PPO等算法
return PPOPolicy(self.base\_model)
PPO(Proximal Policy Optimization)
classPPOPolicy:
def\_\_init\_\_(self, model, learning\_rate: float = 3e-4):
self.model = model
self.optimizer = torch.optim.Adam(
model.parameters(), lr=learning\_rate
)
self.old\_policy = None
defupdate(self, states, actions, rewards, advantages):
"""PPO更新"""
# 1. 计算新策略概率
new\_probs = self.model.get\_action\_probs(states, actions)
# 2. 计算旧策略概率
old\_probs = self.old\_policy.get\_action\_probs(states, actions)
# 3. 计算比率
ratio = new\_probs / old\_probs
# 4. PPO损失(带裁剪)
clip\_epsilon = 0.2
clipped\_ratio = torch.clamp(
ratio, 1 - clip\_epsilon, 1 + clip\_epsilon
)
loss = -torch.min(
ratio * advantages,
clipped\_ratio * advantages
).mean()
# 5. 更新
self.optimizer.zero\_grad()
loss.backward()
self.optimizer.step()
# 6. 更新旧策略
self.old\_policy = copy.deepcopy(self.model)
工具选择RL
classToolSelectionRL:
def\_\_init\_\_(self, agent, tools):
self.agent = agent
self.tools = tools
self.q\_network = self.create\_q\_network()
self.replay\_buffer = []
defselect\_tool(self, state):
"""使用Q-learning选择工具"""
# 状态:当前查询、上下文、可用工具
state\_features = self.extract\_features(state)
# Q值预测
q\_values = self.q\_network(state\_features)
# ε-贪婪策略
if random.random() < self.epsilon:
# 探索:随机选择
return random.choice(self.tools)
else:
# 利用:选择Q值最高的工具
returnself.tools[q\_values.argmax()]
deflearn\_from\_experience(self, state, action, reward, next\_state):
"""从经验中学习"""
# 1. 存储经验
self.replay\_buffer.append({
"state": state,
"action": action,
"reward": reward,
"next\_state": next\_state
})
# 2. 采样训练
iflen(self.replay\_buffer) > 100:
batch = random.sample(self.replay\_buffer, 32)
self.train\_q\_network(batch)
deftrain\_q\_network(self, batch):
"""训练Q网络"""
states = [e["state"] for e in batch]
actions = [e["action"] for e in batch]
rewards = [e["reward"] for e in batch]
next\_states = [e["next\_state"] for e in batch]
# 当前Q值
current\_q = self.q\_network(states)[actions]
# 目标Q值
next\_q = self.q\_network(next\_states).max()
target\_q = rewards + 0.9 * next\_q # 折扣因子0.9
# 损失
loss = F.mse\_loss(current\_q, target\_q)
# 更新
self.optimizer.zero\_grad()
loss.backward()
self.optimizer.step()
对话策略RL
classDialoguePolicyRL:
def\_\_init\_\_(self, agent):
self.agent = agent
self.policy\_network = self.create\_policy\_network()
self.value\_network = self.create\_value\_network()
defselect\_action(self, dialogue\_state):
"""选择对话动作"""
# 动作空间:询问、确认、回答、结束等
action\_probs = self.policy\_network(dialogue\_state)
action = torch.multinomial(action\_probs, 1)
return action
defupdate\_policy(self, episode):
"""更新策略"""
states, actions, rewards = episode
# 计算回报
returns = self.compute\_returns(rewards)
# 计算优势
values = self.value\_network(states)
advantages = returns - values
# 策略梯度
action\_probs = self.policy\_network(states)
selected\_probs = action\_probs.gather(1, actions)
policy\_loss = -torch.log(selected\_probs) * advantages
# 价值损失
value\_loss = F.mse\_loss(values, returns)
# 总损失
total\_loss = policy\_loss.mean() + value\_loss
# 更新
self.optimizer.zero\_grad()
total\_loss.backward()
self.optimizer.step()
最佳实践:
- • 设计合适的奖励函数,引导学习目标
- • 使用经验回放提高样本效率
- • 实现探索-利用平衡(ε-贪婪、UCB等)
- • 监控训练过程,防止策略崩溃
- • 结合监督学习预训练,加速收敛
12|Agent 时间序列处理如何实现?时间序列数据在 Agent 中的应用场景有哪些?
参考答案:
应用场景:
对话历史管理
- • 维护时间顺序的对话记录
- • 分析对话趋势
- • 识别话题转换
用户行为分析
- • 跟踪用户行为序列
- • 预测用户意图
- • 个性化推荐
系统监控
- • 监控Agent性能指标
- • 检测异常模式
- • 预测系统负载
任务执行跟踪
- • 记录任务执行时间线
- • 分析任务完成模式
- • 优化执行策略
实现方式:
时间序列记忆管理
from datetime import datetime
from typing importList, Dict
classTimeSeriesMemory:
def\_\_init\_\_(self, max\_length: int = 1000):
self.memory: List[Dict] = []
self.max\_length = max\_length
defadd\_event(self, event\_type: str, data: Dict, timestamp: datetime = None):
"""添加时间序列事件"""
if timestamp isNone:
timestamp = datetime.now()
event = {
"timestamp": timestamp,
"type": event\_type,
"data": data
}
self.memory.append(event)
# 限制长度
iflen(self.memory) > self.max\_length:
self.memory = self.memory[-self.max\_length:]
defget\_events\_in\_range(self, start: datetime, end: datetime) -> List[Dict]:
"""获取时间范围内的事件"""
return [
event for event inself.memory
if start <= event["timestamp"] <= end
]
defget\_recent\_events(self, n: int = 10) -> List[Dict]:
"""获取最近N个事件"""
returnself.memory[-n:]
defanalyze\_trend(self, event\_type: str, window: int = 10):
"""分析趋势"""
events = [
e for e inself.memory
if e["type"] == event\_type
][-window:]
iflen(events) < 2:
returnNone
# 计算趋势(简化:线性回归斜率)
timestamps = [e["timestamp"].timestamp() for e in events]
values = [e["data"].get("value", 0) for e in events]
# 线性回归
slope = self.compute\_slope(timestamps, values)
return {"trend": "increasing"if slope > 0else"decreasing", "slope": slope}
时间序列预测
import numpy as np
from sklearn.linear\_model import LinearRegression
classTimeSeriesPredictor:
def\_\_init\_\_(self, window\_size: int = 10):
self.window\_size = window\_size
self.model = LinearRegression()
defpredict\_next(self, series: List[float]) -> float:
"""预测下一个值"""
iflen(series) < self.window\_size:
return series[-1] if series else0.0
# 准备特征(滑动窗口)
X = []
y = []
for i inrange(len(series) - self.window\_size):
X.append(series[i:i+self.window\_size])
y.append(series[i+self.window\_size])
# 训练
self.model.fit(X, y)
# 预测
last\_window = series[-self.window\_size:]
prediction = self.model.predict([last\_window])[0]
return prediction
defpredict\_sequence(self, series: List[float], n: int = 5) -> List[float]:
"""预测未来N个值"""
predictions = []
current\_series = series.copy()
for \_ inrange(n):
next\_value = self.predict\_next(current\_series)
predictions.append(next\_value)
current\_series.append(next\_value)
return predictions
时间序列异常检测
classTimeSeriesAnomalyDetector:
def\_\_init\_\_(self, threshold: float = 2.0):
self.threshold = threshold
self.history = []
defdetect\_anomaly(self, value: float, timestamp: datetime) -> bool:
"""检测异常"""
iflen(self.history) < 10:
self.history.append((timestamp, value))
returnFalse
# 计算统计量
values = [v for \_, v inself.history]
mean = np.mean(values)
std = np.std(values)
# Z-score检测
z\_score = abs(value - mean) / (std + 1e-6)
if z\_score > self.threshold:
returnTrue
self.history.append((timestamp, value))
# 保持历史长度
iflen(self.history) > 100:
self.history = self.history[-100:]
returnFalse
时间序列Agent
classTimeSeriesAgent:
def\_\_init\_\_(self, llm, memory: TimeSeriesMemory):
self.llm = llm
self.memory = memory
self.predictor = TimeSeriesPredictor()
self.anomaly\_detector = TimeSeriesAnomalyDetector()
asyncdefprocess\_with\_temporal\_context(self, query: str):
"""使用时间上下文处理"""
# 1. 获取时间序列上下文
recent\_events = self.memory.get\_recent\_events(20)
# 2. 分析趋势
trends = {}
for event\_type inset(e["type"] for e in recent\_events):
trend = self.memory.analyze\_trend(event\_type)
if trend:
trends[event\_type] = trend
# 3. 检测异常
anomalies = []
for event in recent\_events:
if"value"in event["data"]:
ifself.anomaly\_detector.detect\_anomaly(
event["data"]["value"],
event["timestamp"]
):
anomalies.append(event)
# 4. 构建时间上下文提示
temporal\_context = self.build\_temporal\_context(
recent\_events, trends, anomalies
)
# 5. 生成响应
response = awaitself.llm.generate(
f"上下文:{temporal\_context}\n\n问题:{query}"
)
# 6. 记录交互
self.memory.add\_event("interaction", {
"query": query,
"response": response
})
return response
defbuild\_temporal\_context(self, events, trends, anomalies):
"""构建时间上下文"""
context = f"最近{len(events)}个事件:\n"
for event in events[-5:]: # 最近5个
context += f"- {event['type']}: {event['data']}\n"
if trends:
context += "\n趋势分析:\n"
for event\_type, trend in trends.items():
context += f"- {event\_type}: {trend['trend']}\n"
if anomalies:
context += "\n异常检测:\n"
for anomaly in anomalies:
context += f"- {anomaly['type']}: {anomaly['data']}\n"
return context
最佳实践:
- • 使用滑动窗口处理时间序列
- • 实现时间索引,快速查询
- • 定期清理旧数据,控制内存
- • 使用时间序列模型(LSTM、Transformer)进行预测
- • 实现异常检测,及时发现问题
五、Agent数据集成篇(3题)
13|Agent 知识图谱集成如何实现?知识图谱如何增强 Agent 的能力?
参考答案:
增强能力:
结构化知识
- • 实体关系明确
- • 支持多跳推理
- • 知识可解释
关系推理
- • 沿着图结构推理
- • 发现隐含关系
- • 支持复杂查询
知识验证
- • 验证生成内容的正确性
- • 检测知识冲突
- • 提高可靠性
实现方式:
知识图谱检索
from typing importList, Dict
import networkx as nx
classKnowledgeGraphAgent:
def\_\_init\_\_(self, llm, kg):
self.llm = llm
self.kg = kg # NetworkX图或图数据库连接
asyncdefquery\_with\_kg(self, query: str):
"""使用知识图谱查询"""
# 1. 从查询中提取实体
entities = awaitself.extract\_entities(query)
# 2. 在知识图谱中检索
subgraph = self.retrieve\_subgraph(entities)
# 3. 转换为文本上下文
context = self.subgraph\_to\_text(subgraph)
# 4. 生成回答
response = awaitself.llm.generate(
f"基于以下知识图谱信息回答问题:\n{context}\n\n问题:{query}"
)
return response
asyncdefextract\_entities(self, query: str) -> List[str]:
"""提取实体"""
# 使用NER或LLM提取
prompt = f"从以下文本中提取实体:{query}"
entities = awaitself.llm.extract\_entities(prompt)
return entities
defretrieve\_subgraph(self, entities: List[str], hops: int = 2):
"""检索子图"""
subgraph\_nodes = set(entities)
# 多跳检索
for \_ inrange(hops):
new\_nodes = set()
for node in subgraph\_nodes:
# 获取邻居节点
neighbors = list(self.kg.neighbors(node))
new\_nodes.update(neighbors)
subgraph\_nodes.update(new\_nodes)
# 构建子图
subgraph = self.kg.subgraph(subgraph\_nodes)
return subgraph
defsubgraph\_to\_text(self, subgraph) -> str:
"""子图转文本"""
text = ""
for node in subgraph.nodes():
# 节点信息
text += f"实体:{node}\n"
# 关系信息
for neighbor in subgraph.neighbors(node):
edge\_data = subgraph[node][neighbor]
relation = edge\_data.get("relation", "related\_to")
text += f" -{relation}-> {neighbor}\n"
return text
图数据库集成
from neo4j import GraphDatabase
classNeo4jAgent:
def\_\_init\_\_(self, llm, uri: str, user: str, password: str):
self.llm = llm
self.driver = GraphDatabase.driver(uri, auth=(user, password))
defclose(self):
self.driver.close()
asyncdefquery\_cypher(self, query: str, cypher\_query: str):
"""使用Cypher查询"""
withself.driver.session() as session:
result = session.run(cypher\_query)
records = [record for record in result]
# 转换为文本
context = self.records\_to\_text(records)
# 生成回答
response = awaitself.llm.generate(
f"知识图谱查询结果:\n{context}\n\n问题:{query}"
)
return response
defrecords\_to\_text(self, records) -> str:
"""记录转文本"""
text = ""
for record in records:
# 处理记录
for key, value in record.items():
text += f"{key}: {value}\n"
return text
asyncdefmulti\_hop\_reasoning(self, start\_entity: str,
target\_relation: str):
"""多跳推理"""
cypher = f"""
MATCH path = (start)-[*1..3]->(end)
WHERE start.name = '{start\_entity}'
AND end.name CONTAINS '{target\_relation}'
RETURN path
LIMIT 10
"""
withself.driver.session() as session:
result = session.run(cypher)
paths = [record["path"] for record in result]
return paths
知识验证
classKnowledgeVerificationAgent:
def\_\_init\_\_(self, llm, kg):
self.llm = llm
self.kg = kg
asyncdefverify\_response(self, query: str, response: str) -> Dict:
"""验证回答"""
# 1. 从回答中提取声明
claims = awaitself.extract\_claims(response)
# 2. 在知识图谱中验证
verification\_results = []
for claim in claims:
verified = awaitself.verify\_claim(claim)
verification\_results.append({
"claim": claim,
"verified": verified["is\_true"],
"evidence": verified["evidence"]
})
# 3. 生成验证报告
report = self.generate\_report(verification\_results)
return {
"response": response,
"verification": verification\_results,
"report": report
}
asyncdefverify\_claim(self, claim: str) -> Dict:
"""验证单个声明"""
# 提取实体和关系
entities = awaitself.extract\_entities(claim)
relations = awaitself.extract\_relations(claim)
# 在知识图谱中查找
evidence = []
for entity1 in entities:
for entity2 in entities:
if entity1 != entity2:
# 检查关系
ifself.kg.has\_edge(entity1, entity2):
edge\_data = self.kg[entity1][entity2]
evidence.append({
"entity1": entity1,
"entity2": entity2,
"relation": edge\_data.get("relation")
})
is\_true = len(evidence) > 0
return {"is\_true": is\_true, "evidence": evidence}
Graph RAG集成
classGraphRAGAgent:
def\_\_init\_\_(self, llm, kg, vector\_store):
self.llm = llm
self.kg = kg
self.vector\_store = vector\_store
asyncdefhybrid\_retrieval(self, query: str):
"""混合检索(向量+图谱)"""
# 1. 向量检索
vector\_docs = self.vector\_store.similarity\_search(query, k=5)
# 2. 图谱检索
entities = awaitself.extract\_entities(query)
kg\_subgraph = self.retrieve\_subgraph(entities)
kg\_text = self.subgraph\_to\_text(kg\_subgraph)
# 3. 融合结果
context = f"""
向量检索结果:
{self.docs\_to\_text(vector\_docs)}
知识图谱结果:
{kg\_text}
"""
# 4. 生成回答
response = awaitself.llm.generate(
f"上下文:{context}\n\n问题:{query}"
)
return response
最佳实践:
- • 使用图数据库(Neo4j、ArangoDB)存储知识图谱
- • 实现多跳推理,发现深层关系
- • 结合向量检索和图谱检索(Graph RAG)
- • 实现知识验证,提高可靠性
- • 定期更新知识图谱,保持时效性
14|Agent 向量数据库应用有哪些场景?如何将向量数据库集成到 Agent 中?
参考答案:
应用场景:
语义检索
- • 根据语义相似度检索文档
- • 支持自然语言查询
- • 提高检索准确性
长期记忆管理
- • 存储历史对话的向量表示
- • 快速检索相关历史
- • 支持上下文增强
知识库检索
- • 从知识库中检索相关信息
- • 支持RAG应用
- • 提高回答准确性
相似案例检索
- • 检索相似的历史案例
- • 参考历史解决方案
- • 提高处理效率
实现方式:
向量数据库集成
from langchain.vectorstores import Chroma, Pinecone, FAISS
from langchain.embeddings import OpenAIEmbeddings
from typing importList
classVectorDBAgent:
def\_\_init\_\_(self, llm, vector\_store\_type: str = "chroma"):
self.llm = llm
self.embeddings = OpenAIEmbeddings()
# 初始化向量数据库
if vector\_store\_type == "chroma":
self.vector\_store = Chroma(
embedding\_function=self.embeddings,
persist\_directory="./vector\_db"
)
elif vector\_store\_type == "faiss":
self.vector\_store = FAISS.from\_texts(
[""], self.embeddings
)
defadd\_documents(self, documents: List[str], metadatas: List[Dict] = None):
"""添加文档到向量数据库"""
self.vector\_store.add\_texts(
texts=documents,
metadatas=metadatas
)
asyncdefretrieve\_and\_generate(self, query: str, k: int = 5):
"""检索并生成"""
# 1. 向量检索
docs = self.vector\_store.similarity\_search(query, k=k)
# 2. 构建上下文
context = self.docs\_to\_text(docs)
# 3. 生成回答
response = awaitself.llm.generate(
f"基于以下信息回答问题:\n{context}\n\n问题:{query}"
)
return response
defdocs\_to\_text(self, docs) -> str:
"""文档转文本"""
return"\n\n".join([doc.page\_content for doc in docs])
混合检索
classHybridRetrievalAgent:
def\_\_init\_\_(self, llm, vector\_store, keyword\_index):
self.llm = llm
self.vector\_store = vector\_store # 向量检索
self.keyword\_index = keyword\_index # 关键词检索
asyncdefhybrid\_search(self, query: str, k: int = 10):
"""混合检索"""
# 1. 向量检索
vector\_docs = self.vector\_store.similarity\_search(query, k=k)
# 2. 关键词检索
keyword\_docs = self.keyword\_index.search(query, k=k)
# 3. 结果融合(Reciprocal Rank Fusion)
fused\_docs = self.rrf\_fusion(vector\_docs, keyword\_docs)
return fused\_docs[:k]
defrrf\_fusion(self, list1: List, list2: List, k: int = 60) -> List:
"""Reciprocal Rank Fusion"""
scores = {}
# 计算第一个列表的分数
for rank, doc inenumerate(list1, 1):
doc\_id = doc.metadata.get("id", id(doc))
scores[doc\_id] = scores.get(doc\_id, 0) + 1 / (k + rank)
# 计算第二个列表的分数
for rank, doc inenumerate(list2, 1):
doc\_id = doc.metadata.get("id", id(doc))
scores[doc\_id] = scores.get(doc\_id, 0) + 1 / (k + rank)
# 按分数排序
sorted\_docs = sorted(
set(list1 + list2),
key=lambda doc: scores.get(
doc.metadata.get("id", id(doc)), 0
),
reverse=True
)
return sorted\_docs
记忆管理
classVectorMemoryAgent:
def\_\_init\_\_(self, llm, vector\_store):
self.llm = llm
self.vector\_store = vector\_store
self.conversation\_buffer = []
asyncdefprocess\_with\_memory(self, query: str):
"""使用向量记忆处理"""
# 1. 从向量数据库检索相关历史
relevant\_memories = self.vector\_store.similarity\_search(
query, k=5
)
# 2. 构建记忆上下文
memory\_context = self.memories\_to\_text(relevant\_memories)
# 3. 生成回答
response = awaitself.llm.generate(
f"相关历史:\n{memory\_context}\n\n当前问题:{query}"
)
# 4. 保存当前交互到向量数据库
self.save\_interaction(query, response)
return response
defsave\_interaction(self, query: str, response: str):
"""保存交互到向量数据库"""
# 组合查询和回答
interaction\_text = f"Q: {query}\nA: {response}"
# 添加到向量数据库
self.vector\_store.add\_texts(
texts=[interaction\_text],
metadatas=[{
"type": "interaction",
"timestamp": datetime.now().isoformat()
}]
)
多模态向量检索
classMultimodalVectorAgent:
def\_\_init\_\_(self, llm, vector\_store, image\_encoder):
self.llm = llm
self.vector\_store = vector\_store
self.image\_encoder = image\_encoder
asyncdefsearch\_multimodal(self, query: str, image: bytes = None):
"""多模态检索"""
if image:
# 图像检索
image\_vector = self.image\_encoder.encode(image)
image\_docs = self.vector\_store.similarity\_search\_by\_vector(
image\_vector, k=5
)
else:
image\_docs = []
# 文本检索
text\_docs = self.vector\_store.similarity\_search(query, k=5)
# 融合结果
all\_docs = self.merge\_results(text\_docs, image\_docs)
# 生成回答
context = self.docs\_to\_text(all\_docs)
response = awaitself.llm.generate(
f"上下文:{context}\n\n问题:{query}"
)
return response
最佳实践:
- • 选择合适的向量数据库(Chroma、Pinecone、Weaviate等)
- • 使用高质量的embedding模型
- • 实现混合检索(向量+关键词)提高召回率
- • 定期更新向量索引,保持时效性
- • 优化chunk大小和overlap,平衡检索精度和上下文长度
15|Agent 图数据库应用如何实现?图数据库在 Agent 中的优势是什么?
参考答案:
优势:
关系查询优势
- • 高效的多跳关系查询
- • 支持复杂图遍历
- • 关系查询性能优于关系数据库
结构化知识
- • 实体-关系-实体三元组
- • 知识结构清晰
- • 易于理解和维护
推理能力
- • 支持路径查询
- • 发现隐含关系
- • 支持图算法(PageRank、社区发现等)
灵活性
- • 动态添加节点和边
- • 无需预定义schema
- • 易于扩展
实现方式:
Neo4j集成
from neo4j import GraphDatabase
from typing importList, Dict
classNeo4jAgent:
def\_\_init\_\_(self, llm, uri: str, user: str, password: str):
self.llm = llm
self.driver = GraphDatabase.driver(uri, auth=(user, password))
defclose(self):
self.driver.close()
asyncdefquery\_with\_graph(self, query: str):
"""使用图数据库查询"""
# 1. 提取实体
entities = awaitself.extract\_entities(query)
# 2. 构建Cypher查询
cypher = self.build\_cypher\_query(entities, query)
# 3. 执行查询
results = self.execute\_cypher(cypher)
# 4. 转换为文本
context = self.results\_to\_text(results)
# 5. 生成回答
response = awaitself.llm.generate(
f"图数据库查询结果:\n{context}\n\n问题:{query}"
)
return response
defbuild\_cypher\_query(self, entities: List[str], query: str) -> str:
"""构建Cypher查询"""
iflen(entities) == 1:
# 单实体查询:查找相关实体
returnf"""
MATCH (n)-[r]->(m)
WHERE n.name = '{entities[0]}'
RETURN n, r, m
LIMIT 20
"""
eliflen(entities) >= 2:
# 多实体查询:查找关系路径
entity\_pairs = ", ".join([
f"'{e}'"for e in entities
])
returnf"""
MATCH path = (n)-[*1..3]->(m)
WHERE n.name IN [{entity\_pairs}]
AND m.name IN [{entity\_pairs}]
RETURN path
LIMIT 10
"""
else:
# 通用查询
return"""
MATCH (n)
RETURN n
LIMIT 10
"""
defexecute\_cypher(self, cypher: str) -> List[Dict]:
"""执行Cypher查询"""
withself.driver.session() as session:
result = session.run(cypher)
return [record.data() for record in result]
defresults\_to\_text(self, results: List[Dict]) -> str:
"""结果转文本"""
text = ""
for i, record inenumerate(results, 1):
text += f"结果 {i}:\n"
for key, value in record.items():
ifisinstance(value, dict):
text += f" {key}: {value}\n"
else:
text += f" {key}: {value}\n"
text += "\n"
return text
知识图谱构建
classKnowledgeGraphBuilder:
def\_\_init\_\_(self, driver):
self.driver = driver
defbuild\_from\_text(self, text: str):
"""从文本构建知识图谱"""
# 1. 提取实体和关系
entities, relations = self.extract\_entities\_relations(text)
# 2. 创建节点
for entity in entities:
self.create\_node(entity)
# 3. 创建关系
for relation in relations:
self.create\_relation(relation)
defcreate\_node(self, entity: Dict):
"""创建节点"""
cypher = f"""
MERGE (n:{entity['type']} {{name: $name}})
SET n += $properties
"""
withself.driver.session() as session:
session.run(cypher,
name=entity['name'],
properties=entity.get('properties', {}))
defcreate\_relation(self, relation: Dict):
"""创建关系"""
cypher = f"""
MATCH (a {{name: $from}})
MATCH (b {{name: $to}})
MERGE (a)-[r:{relation['type']}]->(b)
SET r += $properties
"""
withself.driver.session() as session:
session.run(cypher,
from\_node=relation['from'],
to\_node=relation['to'],
properties=relation.get('properties', {}))
图算法应用
classGraphAlgorithmAgent:
def\_\_init\_\_(self, driver):
self.driver = driver
deffind\_shortest\_path(self, start: str, end: str):
"""最短路径"""
cypher = f"""
MATCH path = shortestPath(
(start {{name: '{start}'}})-[*]-(end {{name: '{end}'}})
)
RETURN path
"""
withself.driver.session() as session:
result = session.run(cypher)
return [record["path"] for record in result]
deffind\_communities(self):
"""社区发现"""
cypher = """
CALL gds.louvain.stream({
nodeProjection: '*',
relationshipProjection: '*'
})
YIELD nodeId, communityId
RETURN nodeId, communityId
"""
withself.driver.session() as session:
result = session.run(cypher)
return [record.data() for record in result]
defcalculate\_centrality(self, node\_name: str):
"""计算中心性"""
cypher = f"""
MATCH (n {{name: '{node\_name}'}})
WITH n,
size((n)-[]->()) as out\_degree,
size((n)<-[]-()) as in\_degree
RETURN n.name, out\_degree, in\_degree,
(out\_degree + in\_degree) as total\_degree
"""
withself.driver.session() as session:
result = session.run(cypher)
return [record.data() for record in result]
图RAG集成
classGraphRAGAgent:
def\_\_init\_\_(self, llm, graph\_db, vector\_db):
self.llm = llm
self.graph\_db = graph\_db
self.vector\_db = vector\_db
asyncdefhybrid\_retrieval(self, query: str):
"""混合检索(图+向量)"""
# 1. 向量检索
vector\_docs = self.vector\_db.similarity\_search(query, k=5)
# 2. 图检索
entities = awaitself.extract\_entities(query)
graph\_results = self.graph\_db.query\_entities(entities)
# 3. 融合结果
context = f"""
向量检索结果:
{self.docs\_to\_text(vector\_docs)}
图数据库结果:
{self.graph\_results\_to\_text(graph\_results)}
"""
# 4. 生成回答
response = awaitself.llm.generate(
f"上下文:{context}\n\n问题:{query}"
)
return response
最佳实践:
- • 选择合适的图数据库(Neo4j、ArangoDB、Amazon Neptune等)
- • 设计合理的图schema,平衡查询性能和存储
- • 使用图算法(路径查询、社区发现、中心性)增强能力
- • 结合向量数据库实现Graph RAG
- • 定期维护图数据,保持数据质量
总结
本文精选了15道关于Agent高级技术的高频面试题,涵盖了:
性能优化 :流式输出处理、并发处理、异步调用
架构设计 :负载均衡、扩展性设计、模型选择策略
模型管理 :模型切换、模型融合、增量学习
学习机制 :在线学习、强化学习应用、时间序列处理
数据集成 :知识图谱集成、向量数据库应用、图数据库应用
核心要点:
- • 性能优化是Agent系统的重要考量
- • 架构设计需要兼顾扩展性和可维护性
- • 模型管理涉及切换、融合和学习策略
- • 学习机制决定了Agent的适应能力
- • 数据集成扩展了Agent的知识边界
面试建议:
- • 掌握Agent性能优化的关键技术
- • 理解Agent架构设计的原则和方法
- • 熟悉模型管理和学习机制
- • 了解数据集成在Agent中的应用
- • 关注最新技术趋势和最佳实践
希望这些题目能帮助您更好地准备大模型应用岗位的面试!
