必看!AI 大模型面试精选之 Agent 性能优化(八)

向量数据库大模型火山方舟
AI大模型Agent面试精选(八)

本文是Agent面试题的第八辑,精选15道关于Agent高级技术的高频面试题,涵盖流式输出处理、并发处理、异步调用、负载均衡、扩展性设计、模型选择策略、模型切换、模型融合、增量学习、在线学习、强化学习应用、知识图谱集成、向量数据库应用、图数据库应用、时间序列处理等核心知识点,适合准备大模型应用岗位面试的同学。

字数约 15000,预计阅读 30 分钟


一、Agent性能优化篇(3题)

01|Agent 流式输出处理如何实现?有哪些技术要点和优化策略?

参考答案:

实现方式:

LLM流式生成

  • • 使用支持流式输出的LLM API
  • • 逐token返回结果
  • • 实时展示给用户

工具调用流式处理

  • • 工具执行结果流式返回
  • • 边执行边返回
  • • 提高用户体验

混合流式

  • • 检索和生成并行流式
  • • 结果逐步融合
  • • 最优体验

技术要点:

流式API调用 流式Agent使用异步生成器逐Token返回响应。流式生成流程包括:流式生成思考过程、生成工具调用、执行工具(如果工具支持流式则流式返回结果)、流式生成最终回答。每个阶段通过yield返回数据块,客户端可以实时接收和展示。

WebSocket流式传输 使用WebSocket实现双向实时通信。服务器接受WebSocket连接后,接收用户消息,通过流式Agent生成响应,逐块发送给客户端。每个数据块包含类型和内容,最后发送完成信号。WebSocket支持双向通信,适合需要实时交互的场景。

SSE(Server-Sent Events)流式传输 使用SSE实现服务器向客户端的单向流式传输。SSE接口返回StreamingResponse,媒体类型为text/event-stream。每个数据块以"data: “开头,JSON格式包含内容,最后发送”[DONE]"表示完成。SSE实现简单,适合只需要服务器推送的场景。

优化策略:

缓冲优化

  • • 小token合并发送,减少网络开销
  • • 设置合理的缓冲区大小
  • • 平衡延迟和吞吐量

错误处理

  • • 流式过程中的错误恢复
  • • 部分失败时的降级处理
  • • 用户友好的错误提示

性能优化

  • • 并行处理多个流
  • • 使用连接池
  • • 缓存中间结果

最佳实践:

  • • 设置合理的流式粒度(token级别或chunk级别)
  • • 处理流式中断和重连
  • • 优化延迟和吞吐量平衡
  • • 提供流式进度指示
  • • 支持流式中断和取消

02|Agent 并发处理有哪些实现方式?如何设计高并发的 Agent 系统?

参考答案:

实现方式:

多进程并发

  • • 使用进程池处理多个请求
  • • 进程间隔离,稳定性高
  • • 适合CPU密集型任务

多线程并发

  • • 使用线程池处理请求
  • • 共享内存,通信方便
  • • 适合I/O密集型任务

异步并发

  • • 使用asyncio异步处理
  • • 单线程高并发
  • • 适合高并发场景

分布式并发

  • • 多机器分布式处理
  • • 水平扩展
  • • 适合大规模系统

设计要点:

异步架构设计

  
import asyncio  
from typing importList, Dict  
from concurrent.futures import ThreadPoolExecutor  
  
classConcurrentAgent:  
def\_\_init\_\_(self, llm, max\_workers=10):  
self.llm = llm  
self.executor = ThreadPoolExecutor(max\_workers=max\_workers)  
self.semaphore = asyncio.Semaphore(max\_workers)  
  
asyncdefprocess\_batch(self, queries: List[str]) -> List[Dict]:  
"""批量并发处理"""  
        tasks = [self.process\_single(query) for query in queries]  
        results = await asyncio.gather(*tasks)  
return results  
  
asyncdefprocess\_single(self, query: str) -> Dict:  
"""处理单个查询"""  
asyncwithself.semaphore:  # 控制并发数  
# 异步调用LLM  
            response = awaitself.llm.agenerate(query)  
  
# 异步执行工具  
            tool\_results = awaitself.execute\_tools\_async(response)  
  
return {  
"query": query,  
"response": response,  
"tool\_results": tool\_results  
            }  
  
asyncdefexecute\_tools\_async(self, response):  
"""异步执行工具"""  
        tool\_calls = self.extract\_tool\_calls(response)  
        tasks = [self.call\_tool\_async(tool) for tool in tool\_calls]  
returnawait asyncio.gather(*tasks)  
  
asyncdefcall\_tool\_async(self, tool\_call):  
"""异步调用工具"""  
returnawait asyncio.to\_thread(  
self.tool\_registry.call,  
            tool\_call  
        )  

消息队列架构

  
import asyncio  
from asyncio import Queue  
  
classMessageQueueAgent:  
def\_\_init\_\_(self, worker\_count=5):  
self.request\_queue = Queue()  
self.response\_queue = Queue()  
self.workers = []  
self.worker\_count = worker\_count  
  
asyncdefstart\_workers(self):  
"""启动工作线程"""  
for i inrange(self.worker\_count):  
            worker = asyncio.create\_task(  
self.worker\_loop(f"worker-{i}")  
            )  
self.workers.append(worker)  
  
asyncdefworker\_loop(self, worker\_id: str):  
"""工作循环"""  
whileTrue:  
            request = awaitself.request\_queue.get()  
try:  
                result = awaitself.process\_request(request)  
awaitself.response\_queue.put({  
"request\_id": request["id"],  
"result": result  
                })  
except Exception as e:  
awaitself.response\_queue.put({  
"request\_id": request["id"],  
"error": str(e)  
                })  
finally:  
self.request\_queue.task\_done()  
  
asyncdefsubmit\_request(self, query: str) -> str:  
"""提交请求"""  
        request\_id = f"req-{asyncio.get\_event\_loop().time()}"  
awaitself.request\_queue.put({  
"id": request\_id,  
"query": query  
        })  
return request\_id  

连接池管理

  
from aiohttp import ClientSession, TCPConnector  
import asyncio  
  
classPooledAgent:  
def\_\_init\_\_(self, max\_connections=100):  
self.connector = TCPConnector(limit=max\_connections)  
self.session = None  
  
asyncdef\_\_aenter\_\_(self):  
self.session = ClientSession(connector=self.connector)  
returnself  
  
asyncdef\_\_aexit\_\_(self, *args):  
awaitself.session.close()  
  
asyncdefprocess\_concurrent(self, queries: List[str]):  
"""并发处理"""  
        tasks = [  
self.process\_with\_session(query)  
for query in queries  
        ]  
returnawait asyncio.gather(*tasks)  
  
asyncdefprocess\_with\_session(self, query: str):  
"""使用连接池处理"""  
asyncwithself.session.post(  
"/api/llm/generate",  
            json={"query": query}  
        ) as response:  
returnawait response.json()  

高并发设计原则:

资源管理

  • • 连接池管理
  • • 内存限制
  • • CPU使用率控制

负载控制

  • • 限流机制(Rate Limiting)
  • • 背压处理(Backpressure)
  • • 优先级队列

容错机制

  • • 超时处理
  • • 重试机制
  • • 降级策略

最佳实践:

  • • 使用异步I/O提高并发能力
  • • 合理设置并发数(避免资源耗尽)
  • • 实现请求队列和负载均衡
  • • 监控系统资源使用情况
  • • 实现优雅降级和熔断机制

03|Agent 异步调用如何实现?异步调用与同步调用的区别和适用场景是什么?

参考答案:

异步调用实现:

使用async/await

  
import asyncio  
  
classAsyncAgent:  
def\_\_init\_\_(self, llm):  
self.llm = llm  
  
asyncdefprocess\_async(self, query: str):  
"""异步处理"""  
# 异步调用LLM  
        response = awaitself.llm.agenerate(query)  
  
# 异步执行工具  
        tool\_results = await asyncio.gather(*[  
self.call\_tool\_async(tool)  
for tool inself.extract\_tools(response)  
        ])  
  
return tool\_results  
  
asyncdefcall\_tool\_async(self, tool\_call):  
"""异步调用工具"""  
# 模拟异步I/O操作  
await asyncio.sleep(0.1)  # 模拟网络延迟  
returnf"Tool result for {tool\_call}"  

异步工具注册

  
from typing importCallable, Awaitable  
  
classAsyncToolRegistry:  
def\_\_init\_\_(self):  
self.tools: Dict[str, Callable[..., Awaitable]] = {}  
  
defregister(self, name: str, func: Callable[..., Awaitable]):  
"""注册异步工具"""  
self.tools[name] = func  
  
asyncdefcall(self, tool\_name: str, *args, **kwargs):  
"""异步调用工具"""  
if tool\_name notinself.tools:  
raise ValueError(f"Tool {tool\_name} not found")  
returnawaitself.tools[tool\_name](*args, **kwargs)  

异步批处理

  
classAsyncBatchAgent:  
asyncdefprocess\_batch(self, queries: List[str]):  
"""异步批处理"""  
# 创建任务列表  
        tasks = [self.process\_single(query) for query in queries]  
  
# 并发执行  
        results = await asyncio.gather(*tasks, return\_exceptions=True)  
  
# 处理结果  
        processed\_results = []  
for i, result inenumerate(results):  
ifisinstance(result, Exception):  
                processed\_results.append({  
"query": queries[i],  
"error": str(result)  
                })  
else:  
                processed\_results.append({  
"query": queries[i],  
"result": result  
                })  
  
return processed\_results  

区别对比:

| 特性 | 同步调用 | 异步调用 | | --- | --- | --- | | 执行方式 | 顺序执行,阻塞等待 | 并发执行,非阻塞 | | 资源利用 | 低(等待I/O时CPU空闲) | 高(等待时处理其他任务) | | 并发能力 | 低(受线程/进程数限制) | 高(单线程可处理大量请求) | | 代码复杂度 | 简单直观 | 相对复杂(需要async/await) | | 适用场景 | CPU密集型、简单任务 | I/O密集型、高并发场景 | | 错误处理 | 简单(try/except) | 需要特殊处理(asyncio异常) |

适用场景:

异步调用适合:

  • 高并发场景 :大量用户同时请求
  • I/O密集型 :网络请求、数据库查询、文件读写
  • 实时系统 :需要快速响应的系统
  • 流式处理 :需要实时返回结果的场景

同步调用适合:

  • CPU密集型 :大量计算任务
  • 简单任务 :逻辑简单,不需要并发
  • 调试方便 :代码简单,易于调试
  • 资源受限 :单机资源有限的情况

混合使用:

  
classHybridAgent:  
asyncdefprocess\_hybrid(self, query: str):  
"""混合使用同步和异步"""  
# 异步调用LLM(I/O操作)  
        response = awaitself.llm.agenerate(query)  
  
# 同步处理数据(CPU密集型)  
        processed\_data = self.process\_data\_sync(response)  
  
# 异步调用工具(I/O操作)  
        tool\_results = awaitself.call\_tools\_async(processed\_data)  
  
return tool\_results  
  
defprocess\_data\_sync(self, data):  
"""同步处理(CPU密集型)"""  
# 使用同步方法处理  
return data.upper()  

最佳实践:

  • • I/O操作使用异步,CPU计算使用同步
  • • 合理使用asyncio.gather提高并发
  • • 设置合理的超时时间
  • • 处理异步异常和取消操作
  • • 使用连接池管理资源

二、Agent架构设计篇(3题)

04|Agent 负载均衡有哪些策略?如何实现 Agent 的负载均衡?

参考答案:

负载均衡策略:

轮询(Round Robin)

  • • 按顺序分配请求
  • • 简单公平
  • • 不考虑服务器负载

加权轮询(Weighted Round Robin)

  • • 根据服务器性能分配权重
  • • 性能好的服务器处理更多请求
  • • 适合服务器性能差异大的场景

最少连接(Least Connections)

  • • 分配给连接数最少的服务器
  • • 动态平衡负载
  • • 适合长连接场景

响应时间(Response Time)

  • • 根据响应时间选择服务器
  • • 选择响应最快的服务器
  • • 适合实时性要求高的场景

一致性哈希(Consistent Hashing)

  • • 根据请求特征哈希分配
  • • 相同请求总是分配到同一服务器
  • • 适合需要会话保持的场景

实现方式:

应用层负载均衡

  
from typing importList  
import random  
import time  
  
classLoadBalancer:  
def\_\_init\_\_(self, agents: List[str], strategy="round\_robin"):  
self.agents = agents  
self.strategy = strategy  
self.current\_index = 0  
self.agent\_stats = {agent: {  
"connections": 0,  
"response\_time": 0,  
"requests": 0  
        } for agent in agents}  
  
defselect\_agent(self, request\_id: str = None) -> str:  
"""选择Agent"""  
ifself.strategy == "round\_robin":  
returnself.\_round\_robin()  
elifself.strategy == "least\_connections":  
returnself.\_least\_connections()  
elifself.strategy == "response\_time":  
returnself.\_response\_time()  
elifself.strategy == "consistent\_hash":  
returnself.\_consistent\_hash(request\_id)  
else:  
return random.choice(self.agents)  
  
def\_round\_robin(self) -> str:  
"""轮询策略"""  
        agent = self.agents[self.current\_index]  
self.current\_index = (self.current\_index + 1) % len(self.agents)  
return agent  
  
def\_least\_connections(self) -> str:  
"""最少连接策略"""  
returnmin(  
self.agents,  
            key=lambda a: self.agent\_stats[a]["connections"]  
        )  
  
def\_response\_time(self) -> str:  
"""响应时间策略"""  
returnmin(  
self.agents,  
            key=lambda a: self.agent\_stats[a]["response\_time"]  
        )  
  
def\_consistent\_hash(self, request\_id: str) -> str:  
"""一致性哈希"""  
ifnot request\_id:  
            request\_id = str(time.time())  
        hash\_value = hash(request\_id)  
        index = hash\_value % len(self.agents)  
returnself.agents[index]  
  
defupdate\_stats(self, agent: str, response\_time: float):  
"""更新统计信息"""  
        stats = self.agent\_stats[agent]  
        stats["requests"] += 1  
        stats["response\_time"] = (  
            stats["response\_time"] * 0.9 + response\_time * 0.1  
        )  # 指数移动平均  

Nginx负载均衡配置

  
upstream agent\_backend {  
# 轮询  
server agent1:8000;  
server agent2:8000;  
server agent3:8000;  
  
# 加权轮询  
# server agent1:8000 weight=3;  
# server agent2:8000 weight=2;  
# server agent3:8000 weight=1;  
  
# 最少连接  
# least\_conn;  
}  
  
server {  
listen80;  
location / {  
proxy\_pass http://agent\_backend;  
proxy\_set\_header Host $host;  
proxy\_set\_header X-Real-IP $remote\_addr;  
    }  
}  

健康检查机制

  
import asyncio  
from typing importDict  
  
classHealthCheckBalancer:  
def\_\_init\_\_(self, agents: List[str]):  
self.agents = agents  
self.health\_status: Dict[str, bool] = {  
            agent: Truefor agent in agents  
        }  
self.check\_interval = 30# 30秒检查一次  
  
asyncdefstart\_health\_check(self):  
"""启动健康检查"""  
whileTrue:  
await asyncio.gather(*[  
self.check\_agent\_health(agent)  
for agent inself.agents  
            ])  
await asyncio.sleep(self.check\_interval)  
  
asyncdefcheck\_agent\_health(self, agent: str):  
"""检查Agent健康状态"""  
try:  
# 发送健康检查请求  
            response = awaitself.ping\_agent(agent)  
self.health\_status[agent] = response.status == 200  
except Exception:  
self.health\_status[agent] = False  
  
defget\_healthy\_agents(self) -> List[str]:  
"""获取健康的Agent列表"""  
return [  
            agent for agent, healthy inself.health\_status.items()  
if healthy  
        ]  
  
defselect\_agent(self) -> str:  
"""从健康Agent中选择"""  
        healthy\_agents = self.get\_healthy\_agents()  
ifnot healthy\_agents:  
raise Exception("No healthy agents available")  
return random.choice(healthy\_agents)  

最佳实践:

  • • 实现健康检查,自动剔除故障节点
  • • 使用多种策略组合(如健康检查+最少连接)
  • • 监控各节点的负载情况
  • • 实现动态权重调整
  • • 支持会话保持(一致性哈希)

05|Agent 扩展性设计有哪些原则?如何设计可扩展的 Agent 架构?

参考答案:

扩展性原则:

模块化设计

  • • 组件独立,职责单一
  • • 接口清晰,易于替换
  • • 松耦合,高内聚

水平扩展

  • • 支持多实例部署
  • • 无状态设计
  • • 易于横向扩展

插件化架构

  • • 工具可插拔
  • • 功能可扩展
  • • 配置驱动

分层架构

  • • 清晰的层次划分
  • • 每层独立扩展
  • • 接口标准化

架构设计:

微服务架构

  
# Agent核心服务  
classAgentCoreService:  
def\_\_init\_\_(self):  
self.tool\_registry = ToolRegistry()  
self.memory\_service = MemoryServiceClient()  
self.llm\_service = LLMServiceClient()  
  
asyncdefprocess(self, request):  
# 1. 获取上下文  
        context = awaitself.memory\_service.get\_context(  
            request.conversation\_id  
        )  
  
# 2. 生成计划  
        plan = awaitself.llm\_service.generate\_plan(  
            request.query, context  
        )  
  
# 3. 执行工具  
        results = awaitself.execute\_tools(plan)  
  
# 4. 生成响应  
        response = awaitself.llm\_service.generate\_response(  
            request.query, context, results  
        )  
  
return response  

插件化工具系统

  
from abc import ABC, abstractmethod  
from typing importDict, Any  
  
classTool(ABC):  
"""工具基类"""  
    @abstractmethod  
defname(self) -> str:  
"""工具名称"""  
pass  
  
    @abstractmethod  
defdescription(self) -> str:  
"""工具描述"""  
pass  
  
    @abstractmethod  
asyncdefexecute(self, params: Dict[str, Any]) -> Any:  
"""执行工具"""  
pass  
  
classToolRegistry:  
"""工具注册表"""  
def\_\_init\_\_(self):  
self.tools: Dict[str, Tool] = {}  
  
defregister(self, tool: Tool):  
"""注册工具"""  
self.tools[tool.name()] = tool  
  
defget\_tool(self, name: str) -> Tool:  
"""获取工具"""  
returnself.tools.get(name)  
  
deflist\_tools(self) -> List[str]:  
"""列出所有工具"""  
returnlist(self.tools.keys())  
  
# 使用示例  
classSearchTool(Tool):  
defname(self) -> str:  
return"search"  
  
defdescription(self) -> str:  
return"搜索工具"  
  
asyncdefexecute(self, params: Dict[str, Any]) -> Any:  
        query = params.get("query")  
returnawaitself.search(query)  

配置驱动架构

  
from dataclasses import dataclass  
from typing importList, Optional  
  
@dataclass  
classAgentConfig:  
"""Agent配置"""  
    llm\_model: str  
    tools: List[str]  
    memory\_type: str  
    max\_iterations: int  
    temperature: float  
  
classConfigurableAgent:  
def\_\_init\_\_(self, config: AgentConfig):  
self.config = config  
self.llm = self.\_init\_llm(config.llm\_model)  
self.tools = self.\_init\_tools(config.tools)  
self.memory = self.\_init\_memory(config.memory\_type)  
  
def\_init\_llm(self, model: str):  
"""初始化LLM"""  
# 根据配置初始化不同的LLM  
if model == "gpt-4":  
return GPT4LLM()  
elif model == "claude":  
return ClaudeLLM()  
else:  
return DefaultLLM()  
  
def\_init\_tools(self, tool\_names: List[str]):  
"""初始化工具"""  
        registry = ToolRegistry()  
for name in tool\_names:  
            tool = self.\_create\_tool(name)  
            registry.register(tool)  
return registry  
  
def\_init\_memory(self, memory\_type: str):  
"""初始化记忆"""  
if memory\_type == "buffer":  
return BufferMemory()  
elif memory\_type == "vector":  
return VectorMemory()  
else:  
return DefaultMemory()  

事件驱动架构

  
from typing importCallable, Dict  
from enum import Enum  
  
classEventType(Enum):  
    TOOL\_CALL = "tool\_call"  
    TOOL\_RESULT = "tool\_result"  
    LLM\_REQUEST = "llm\_request"  
    LLM\_RESPONSE = "llm\_response"  
  
classEventBus:  
"""事件总线"""  
def\_\_init\_\_(self):  
self.handlers: Dict[EventType, List[Callable]] = {}  
  
defsubscribe(self, event\_type: EventType, handler: Callable):  
"""订阅事件"""  
if event\_type notinself.handlers:  
self.handlers[event\_type] = []  
self.handlers[event\_type].append(handler)  
  
defpublish(self, event\_type: EventType, data: Any):  
"""发布事件"""  
if event\_type inself.handlers:  
for handler inself.handlers[event\_type]:  
                handler(data)  
  
classEventDrivenAgent:  
def\_\_init\_\_(self, event\_bus: EventBus):  
self.event\_bus = event\_bus  
self.\_setup\_handlers()  
  
def\_setup\_handlers(self):  
"""设置事件处理器"""  
self.event\_bus.subscribe(  
            EventType.TOOL\_CALL,  
self.on\_tool\_call  
        )  
self.event\_bus.subscribe(  
            EventType.TOOL\_RESULT,  
self.on\_tool\_result  
        )  

扩展性考虑:

水平扩展

  • • 无状态设计
  • • 共享状态外部化(Redis、数据库)
  • • 支持多实例部署

垂直扩展

  • • 组件可独立升级
  • • 支持功能增强
  • • 向后兼容

功能扩展

  • • 插件机制
  • • 工具可插拔
  • • 配置驱动

最佳实践:

  • • 采用微服务架构,组件独立部署
  • • 使用接口抽象,便于替换实现
  • • 实现插件机制,支持功能扩展
  • • 配置外部化,支持动态调整
  • • 设计清晰的API,便于集成

06|Agent 模型选择策略有哪些?如何根据任务特点选择合适的模型?

参考答案:

选择策略:

基于任务类型

  • • 文本生成 → GPT系列
  • • 代码生成 → Codex、StarCoder
  • • 对话任务 → ChatGPT、Claude
  • • 多模态 → GPT-4V、Gemini

基于性能要求

  • • 高精度 → 大模型(GPT-4、Claude-3)
  • • 快速响应 → 小模型(GPT-3.5、Llama)
  • • 成本敏感 → 开源模型(Llama、Mistral)

基于上下文长度

  • • 长上下文 → GPT-4 Turbo、Claude-3
  • • 短上下文 → GPT-3.5、Llama-2

动态选择

  • • 根据查询复杂度选择
  • • 根据历史性能选择
  • • A/B测试选择最优模型

实现方式:

模型路由器

  
from typing importDict, List  
from enum import Enum  
  
classTaskType(Enum):  
    SIMPLE\_QA = "simple\_qa"  
    COMPLEX\_REASONING = "complex\_reasoning"  
    CODE\_GENERATION = "code\_generation"  
    MULTIMODAL = "multimodal"  
  
classModelRouter:  
def\_\_init\_\_(self):  
self.models = {  
"gpt-4": GPT4Model(),  
"gpt-3.5": GPT35Model(),  
"claude-3": Claude3Model(),  
"codex": CodexModel()  
        }  
self.routing\_rules = {  
            TaskType.SIMPLE\_QA: ["gpt-3.5"],  
            TaskType.COMPLEX\_REASONING: ["gpt-4", "claude-3"],  
            TaskType.CODE\_GENERATION: ["codex", "gpt-4"],  
            TaskType.MULTIMODAL: ["gpt-4", "claude-3"]  
        }  
  
defselect\_model(self, task\_type: TaskType, query: str) -> str:  
"""选择模型"""  
# 1. 根据任务类型选择候选模型  
        candidates = self.routing\_rules.get(task\_type, ["gpt-3.5"])  
  
# 2. 根据查询复杂度进一步筛选  
        complexity = self.analyze\_complexity(query)  
if complexity > 0.7:  
# 复杂任务选择大模型  
return"gpt-4"if"gpt-4"in candidates else candidates[0]  
else:  
# 简单任务选择小模型  
return candidates[0]  
  
defanalyze\_complexity(self, query: str) -> float:  
"""分析查询复杂度"""  
# 简化的复杂度分析  
        factors = {  
"长度": len(query) / 1000,  # 归一化  
"关键词": self.count\_keywords(query),  
"嵌套": self.count\_nesting(query)  
        }  
returnsum(factors.values()) / len(factors)  

性能驱动的模型选择

  
classPerformanceBasedRouter:  
def\_\_init\_\_(self):  
self.models = {...}  
self.performance\_stats = {  
            model: {  
"accuracy": 0.0,  
"latency": 0.0,  
"cost": 0.0,  
"requests": 0  
            }  
for model inself.models.keys()  
        }  
  
defselect\_model(self, task\_type: TaskType) -> str:  
"""基于性能选择模型"""  
# 计算每个模型的综合得分  
        scores = {}  
for model, stats inself.performance\_stats.items():  
            score = (  
                stats["accuracy"] * 0.5 +  
                (1 / stats["latency"]) * 0.3 +  
                (1 / stats["cost"]) * 0.2  
            )  
            scores[model] = score  
  
# 选择得分最高的模型  
returnmax(scores, key=scores.get)  
  
defupdate\_stats(self, model: str, accuracy: float,   
                    latency: float, cost: float):  
"""更新性能统计"""  
        stats = self.performance\_stats[model]  
        stats["requests"] += 1  
# 指数移动平均更新  
        alpha = 0.1  
        stats["accuracy"] = (  
            stats["accuracy"] * (1 - alpha) + accuracy * alpha  
        )  
        stats["latency"] = (  
            stats["latency"] * (1 - alpha) + latency * alpha  
        )  
        stats["cost"] = (  
            stats["cost"] * (1 - alpha) + cost * alpha  
        )  

A/B测试模型选择

  
classABTestRouter:  
def\_\_init\_\_(self):  
self.models = {...}  
self.test\_configs = {  
"experiment\_1": {  
"models": ["gpt-4", "claude-3"],  
"traffic\_split": 0.5,  # 50%流量  
"metrics": ["accuracy", "user\_satisfaction"]  
            }  
        }  
  
defselect\_model(self, user\_id: str, task\_type: TaskType) -> str:  
"""A/B测试选择模型"""  
# 根据用户ID决定进入哪个实验组  
        experiment = self.get\_experiment(user\_id)  
if experiment:  
returnself.select\_for\_experiment(user\_id, experiment)  
else:  
returnself.select\_default(task\_type)  
  
defget\_experiment(self, user\_id: str) -> Optional[str]:  
"""获取用户所属实验"""  
# 基于用户ID哈希决定  
        hash\_value = hash(user\_id)  
for exp\_id, config inself.test\_configs.items():  
if hash\_value % 100 < config["traffic\_split"] * 100:  
return exp\_id  
returnNone  

选择决策树:

  
任务类型  
├── 简单问答  
│   └── GPT-3.5(快速、低成本)  
├── 复杂推理  
│   └── GPT-4 / Claude-3(高精度)  
├── 代码生成  
│   └── Codex / GPT-4(专业能力)  
└── 多模态  
    └── GPT-4V / Gemini(多模态支持)  

最佳实践:

  • • 建立模型性能监控系统
  • • 根据任务特点建立选择规则
  • • 实现动态模型切换机制
  • • 进行A/B测试优化选择策略
  • • 考虑成本、延迟、精度的平衡

三、Agent模型管理篇(3题)

07|Agent 模型切换如何实现?如何实现无缝的模型切换?

参考答案:

切换策略:

热切换(Hot Swap)

  • • 运行时切换模型
  • • 无需重启服务
  • • 支持灰度切换

版本切换

  • • 通过版本号管理模型
  • • 支持回滚
  • • 多版本共存

渐进式切换

  • • 逐步增加新模型流量
  • • 监控性能指标
  • • 确认稳定后完全切换

实现方式:

模型管理器

  
from typing importDict, Optional  
from threading import Lock  
  
classModelManager:  
def\_\_init\_\_(self):  
self.models: Dict[str, Any] = {}  
self.current\_model: Optional[str] = None  
self.lock = Lock()  
self.switch\_callbacks = []  
  
defregister\_model(self, model\_id: str, model: Any):  
"""注册模型"""  
withself.lock:  
self.models[model\_id] = model  
  
defswitch\_model(self, new\_model\_id: str, graceful: bool = True):  
"""切换模型"""  
if new\_model\_id notinself.models:  
raise ValueError(f"Model {new\_model\_id} not found")  
  
if graceful:  
# 优雅切换:等待当前请求完成  
self.\_graceful\_switch(new\_model\_id)  
else:  
# 立即切换  
withself.lock:  
self.current\_model = new\_model\_id  
  
# 触发回调  
for callback inself.switch\_callbacks:  
            callback(new\_model\_id)  
  
def\_graceful\_switch(self, new\_model\_id: str):  
"""优雅切换"""  
# 1. 标记新模型为待切换  
# 2. 等待当前请求完成  
# 3. 切换模型  
# 4. 清理旧模型资源(可选)  
withself.lock:  
self.current\_model = new\_model\_id  
  
defget\_model(self, model\_id: Optional[str] = None):  
"""获取模型"""  
        target\_id = model\_id orself.current\_model  
if target\_id notinself.models:  
raise ValueError(f"Model {target\_id} not found")  
returnself.models[target\_id]  

版本管理切换

  
classVersionedModelManager:  
def\_\_init\_\_(self):  
self.versions: Dict[str, Dict] = {}  
self.current\_version: Optional[str] = None  
  
defadd\_version(self, version: str, model: Any, config: Dict):  
"""添加模型版本"""  
self.versions[version] = {  
"model": model,  
"config": config,  
"traffic": 0.0,  # 流量比例  
"status": "active"# active, deprecated, testing  
        }  
  
defswitch\_version(self, new\_version: str,   
                      traffic\_ratio: float = 1.0):  
"""切换版本"""  
if new\_version notinself.versions:  
raise ValueError(f"Version {new\_version} not found")  
  
# 设置流量比例  
self.versions[new\_version]["traffic"] = traffic\_ratio  
  
# 如果流量比例为1.0,设置为当前版本  
if traffic\_ratio >= 1.0:  
self.current\_version = new\_version  
  
defselect\_model(self, request\_id: str) -> Any:  
"""根据流量分配选择模型"""  
# 根据请求ID哈希决定使用哪个版本  
        hash\_value = hash(request\_id) % 100  
        cumulative = 0  
  
for version, info inself.versions.items():  
if info["status"] != "active":  
continue  
            cumulative += info["traffic"] * 100  
if hash\_value < cumulative:  
return info["model"]  
  
# 默认返回当前版本  
returnself.versions[self.current\_version]["model"]  

灰度切换

  
classGradualModelSwitcher:  
def\_\_init\_\_(self):  
self.old\_model: Optional[Any] = None  
self.new\_model: Optional[Any] = None  
self.switch\_ratio = 0.0# 0.0-1.0  
self.metrics = {  
"old\_model": {"success": 0, "total": 0},  
"new\_model": {"success": 0, "total": 0}  
        }  
  
defstart\_switch(self, old\_model: Any, new\_model: Any):  
"""开始切换"""  
self.old\_model = old\_model  
self.new\_model = new\_model  
self.switch\_ratio = 0.1# 从10%开始  
  
defselect\_model(self, request\_id: str) -> Any:  
"""选择模型"""  
        hash\_value = hash(request\_id) % 100  
if hash\_value < self.switch\_ratio * 100:  
returnself.new\_model  
else:  
returnself.old\_model  
  
defupdate\_switch\_ratio(self, success\_rate\_threshold: float = 0.95):  
"""更新切换比例"""  
        new\_rate = self.metrics["new\_model"]["success"] / max(  
self.metrics["new\_model"]["total"], 1  
        )  
  
if new\_rate >= success\_rate\_threshold:  
# 新模型表现良好,增加流量  
self.switch\_ratio = min(self.switch\_ratio + 0.1, 1.0)  
else:  
# 新模型表现不佳,减少流量或回滚  
self.switch\_ratio = max(self.switch\_ratio - 0.1, 0.0)  
  
defrecord\_result(self, model\_type: str, success: bool):  
"""记录结果"""  
self.metrics[model\_type]["total"] += 1  
if success:  
self.metrics[model\_type]["success"] += 1  

无缝切换实现

  
classSeamlessModelSwitcher:  
def\_\_init\_\_(self):  
self.models = {}  
self.active\_model = None  
self.pending\_requests = set()  
self.request\_lock = Lock()  
  
asyncdefprocess\_with\_switch(self, query: str,   
                                 new\_model\_id: Optional[str] = None):  
"""处理请求,支持切换"""  
        request\_id = id(query)  
  
# 如果指定了新模型,准备切换  
if new\_model\_id:  
awaitself.prepare\_switch(new\_model\_id)  
  
# 获取当前模型  
        model = self.get\_active\_model()  
  
# 记录请求  
withself.request\_lock:  
self.pending\_requests.add(request\_id)  
  
try:  
# 处理请求  
            result = await model.process(query)  
return result  
finally:  
# 清理请求记录  
withself.request\_lock:  
self.pending\_requests.discard(request\_id)  
  
# 如果准备切换且无待处理请求,执行切换  
if new\_model\_id andlen(self.pending\_requests) == 0:  
awaitself.execute\_switch(new\_model\_id)  
  
asyncdefprepare\_switch(self, new\_model\_id: str):  
"""准备切换"""  
# 预加载新模型  
if new\_model\_id notinself.models:  
self.models[new\_model\_id] = awaitself.load\_model(new\_model\_id)  
  
asyncdefexecute\_switch(self, new\_model\_id: str):  
"""执行切换"""  
# 等待所有请求完成  
whilelen(self.pending\_requests) > 0:  
await asyncio.sleep(0.1)  
  
# 切换模型  
self.active\_model = self.models[new\_model\_id]  

最佳实践:

  • • 实现优雅切换,等待当前请求完成
  • • 支持灰度切换,逐步增加新模型流量
  • • 监控切换过程中的性能指标
  • • 实现快速回滚机制
  • • 记录切换日志,便于问题排查

08|Agent 模型融合有哪些方法?如何将多个模型融合提升性能?

参考答案:

融合方法:

投票融合(Voting Ensemble)

  • • 多个模型独立生成结果
  • • 投票选择最终结果
  • • 适合分类任务

加权融合(Weighted Ensemble)

  • • 根据模型性能分配权重
  • • 加权平均结果
  • • 适合回归和生成任务

堆叠融合(Stacking)

  • • 使用元模型学习如何融合
  • • 训练融合策略
  • • 性能最优但复杂度高

动态融合(Dynamic Ensemble)

  • • 根据输入特征选择模型
  • • 自适应融合策略
  • • 平衡性能和效率

实现方式:

投票融合

  
from typing importList, Dict  
from collections import Counter  
  
classVotingEnsemble:  
def\_\_init\_\_(self, models: List[Any]):  
self.models = models  
  
asyncdefpredict(self, query: str) -> str:  
"""投票预测"""  
# 所有模型独立预测  
        predictions = await asyncio.gather(*[  
            model.predict(query) for model inself.models  
        ])  
  
# 投票选择  
        vote\_counts = Counter(predictions)  
return vote\_counts.most\_common(1)[0][0]  
  
asyncdefpredict\_with\_confidence(self, query: str) -> Dict:  
"""带置信度的预测"""  
        predictions = await asyncio.gather(*[  
            model.predict\_with\_confidence(query)   
for model inself.models  
        ])  
  
# 加权投票  
        weighted\_votes = {}  
for pred, conf in predictions:  
            weighted\_votes[pred] = (  
                weighted\_votes.get(pred, 0) + conf  
            )  
  
        best\_pred = max(weighted\_votes, key=weighted\_votes.get)  
return {  
"prediction": best\_pred,  
"confidence": weighted\_votes[best\_pred] / len(self.models)  
        }  

加权融合

  
classWeightedEnsemble:  
def\_\_init\_\_(self, models: List[Any], weights: List[float]):  
self.models = models  
self.weights = weights  
# 归一化权重  
        total = sum(weights)  
self.weights = [w / total for w in weights]  
  
asyncdefgenerate(self, query: str) -> str:  
"""加权生成"""  
# 获取所有模型的生成结果  
        results = await asyncio.gather(*[  
            model.generate(query) for model inself.models  
        ])  
  
# 如果是文本生成,使用重排序  
ifself.is\_text\_generation():  
returnself.rerank\_results(results, query)  
else:  
# 如果是数值结果,加权平均  
returnself.weighted\_average(results)  
  
defrerank\_results(self, results: List[str], query: str) -> str:  
"""重排序结果"""  
# 使用交叉编码器或LLM重排序  
        scores = []  
for result in results:  
            score = self.compute\_relevance(result, query)  
            scores.append(score)  
  
# 加权选择  
        weighted\_scores = [  
            score * weight   
for score, weight inzip(scores, self.weights)  
        ]  
        best\_idx = weighted\_scores.index(max(weighted\_scores))  
return results[best\_idx]  

堆叠融合

  
classStackingEnsemble:  
def\_\_init\_\_(self, base\_models: List[Any], meta\_model: Any):  
self.base\_models = base\_models  
self.meta\_model = meta\_model  
self.is\_trained = False  
  
deftrain(self, X\_train, y\_train, X\_val, y\_val):  
"""训练堆叠模型"""  
# 1. 训练基础模型  
        base\_predictions = []  
for model inself.base\_models:  
            model.train(X\_train, y\_train)  
            pred = model.predict(X\_val)  
            base\_predictions.append(pred)  
  
# 2. 构建元特征  
        meta\_features = np.column\_stack(base\_predictions)  
  
# 3. 训练元模型  
self.meta\_model.train(meta\_features, y\_val)  
self.is\_trained = True  
  
asyncdefpredict(self, query: str) -> str:  
"""预测"""  
ifnotself.is\_trained:  
raise ValueError("Model not trained")  
  
# 1. 基础模型预测  
        base\_preds = await asyncio.gather(*[  
            model.predict(query) for model inself.base\_models  
        ])  
  
# 2. 元模型融合  
        meta\_features = np.array([base\_preds])  
        final\_pred = self.meta\_model.predict(meta\_features)  
return final\_pred  

动态融合

  
classDynamicEnsemble:  
def\_\_init\_\_(self, models: Dict[str, Any]):  
self.models = models  
self.performance\_tracker = {  
            name: {"accuracy": 0.0, "latency": 0.0}  
for name in models.keys()  
        }  
  
asyncdefpredict(self, query: str) -> str:  
"""动态选择模型"""  
# 1. 分析查询特征  
        features = self.analyze\_query(query)  
  
# 2. 选择最适合的模型  
        selected\_models = self.select\_models(features)  
  
# 3. 融合结果  
iflen(selected\_models) == 1:  
returnawait selected\_models[0].predict(query)  
else:  
returnawaitself.fuse\_results(  
                selected\_models, query  
            )  
  
defselect\_models(self, features: Dict) -> List[Any]:  
"""选择模型"""  
# 根据查询复杂度、长度等特征选择  
if features["complexity"] > 0.7:  
# 复杂查询使用大模型  
return [self.models["gpt-4"]]  
elif features["length"] > 1000:  
# 长文本使用长上下文模型  
return [self.models["claude-3"]]  
else:  
# 简单查询使用多个小模型融合  
return [  
self.models["gpt-3.5"],  
self.models["llama-2"]  
            ]  
  
asyncdeffuse\_results(self, models: List[Any],   
                         query: str) -> str:  
"""融合多个模型结果"""  
        results = await asyncio.gather(*[  
            model.predict(query) for model in models  
        ])  
  
# 使用一致性检查  
ifself.check\_consistency(results):  
# 结果一致,返回任意一个  
return results[0]  
else:  
# 结果不一致,使用置信度选择  
returnself.select\_by\_confidence(models, results, query)  

融合策略选择:

  • 简单任务 :投票融合,快速高效
  • 复杂任务 :加权融合,考虑模型性能
  • 高精度要求 :堆叠融合,最优性能
  • 动态场景 :动态融合,自适应选择

最佳实践:

  • • 选择互补的模型(不同架构、不同训练数据)
  • • 根据任务特点选择融合方法
  • • 监控各模型的性能,动态调整权重
  • • 考虑融合的计算成本
  • • 实现A/B测试验证融合效果

09|Agent 增量学习如何实现?增量学习与全量学习的区别是什么?

参考答案:

区别对比:

| 特性 | 增量学习 | 全量学习 | | --- | --- | --- | | 训练数据 | 只使用新数据 | 使用所有历史数据 | | 训练时间 | 短(只训练新数据) | 长(训练所有数据) | | 存储需求 | 低(不存储历史数据) | 高(存储所有数据) | | 计算资源 | 少 | 多 | | 遗忘问题 | 可能存在(灾难性遗忘) | 不存在 | | 适应性 | 高(快速适应新数据) | 低(需要重新训练) | | 适用场景 | 数据流、在线学习 | 批量更新、离线训练 |

实现方式:

参数微调增量学习

  
import torch  
import torch.nn as nn  
from torch.utils.data import DataLoader  
  
classIncrementalLearner:  
def\_\_init\_\_(self, model: nn.Module, learning\_rate: float = 1e-5):  
self.model = model  
self.optimizer = torch.optim.Adam(  
            model.parameters(), lr=learning\_rate  
        )  
self.memory\_buffer = []  # 经验回放缓冲区  
  
deflearn\_incremental(self, new\_data: DataLoader,   
                        epochs: int = 1):  
"""增量学习"""  
# 1. 将新数据加入缓冲区  
self.update\_memory\_buffer(new\_data)  
  
# 2. 从缓冲区采样训练  
for epoch inrange(epochs):  
# 混合新旧数据  
            batch = self.sample\_from\_buffer()  
  
# 前向传播  
            loss = self.compute\_loss(batch)  
  
# 反向传播  
self.optimizer.zero\_grad()  
            loss.backward()  
self.optimizer.step()  
  
defupdate\_memory\_buffer(self, new\_data: DataLoader):  
"""更新经验回放缓冲区"""  
for batch in new\_data:  
self.memory\_buffer.append(batch)  
  
# 限制缓冲区大小  
        max\_size = 10000  
iflen(self.memory\_buffer) > max\_size:  
self.memory\_buffer = self.memory\_buffer[-max\_size:]  
  
defsample\_from\_buffer(self, batch\_size: int = 32):  
"""从缓冲区采样"""  
# 混合新旧数据  
        old\_samples = random.sample(  
self.memory\_buffer[:-len(new\_data)],   
            batch\_size // 2  
        )  
        new\_samples = random.sample(  
self.memory\_buffer[-len(new\_data):],   
            batch\_size // 2  
        )  
return old\_samples + new\_samples  

LoRA增量学习

  
classLoRAIncrementalLearning:  
def\_\_init\_\_(self, base\_model, lora\_config):  
self.base\_model = base\_model  
self.lora\_adapters = {}  # 存储不同任务的LoRA适配器  
self.lora\_config = lora\_config  
  
defadd\_task(self, task\_name: str, new\_data: DataLoader):  
"""为任务添加LoRA适配器"""  
# 1. 创建新的LoRA适配器  
        lora\_adapter = self.create\_lora\_adapter(  
self.base\_model, self.lora\_config  
        )  
  
# 2. 在新数据上微调  
self.finetune\_lora(lora\_adapter, new\_data)  
  
# 3. 保存适配器  
self.lora\_adapters[task\_name] = lora\_adapter  
  
defpredict(self, query: str, task\_name: str):  
"""使用任务特定的适配器预测"""  
        adapter = self.lora\_adapters.get(task\_name)  
if adapter:  
# 激活适配器  
self.activate\_adapter(adapter)  
returnself.base\_model.predict(query)  

知识蒸馏增量学习

  
classKnowledgeDistillationIncremental:  
def\_\_init\_\_(self, teacher\_model, student\_model):  
self.teacher\_model = teacher\_model  
self.student\_model = student\_model  
self.temperature = 3.0# 蒸馏温度  
  
defincremental\_train(self, new\_data: DataLoader):  
"""增量学习(知识蒸馏)"""  
for batch in new\_data:  
# 1. 教师模型预测(旧知识)  
with torch.no\_grad():  
                teacher\_logits = self.teacher\_model(batch)  
  
# 2. 学生模型预测(学习新数据)  
            student\_logits = self.student\_model(batch)  
  
# 3. 计算蒸馏损失  
            distillation\_loss = self.distillation\_loss(  
                teacher\_logits, student\_logits  
            )  
  
# 4. 计算任务损失(新数据)  
            task\_loss = self.task\_loss(student\_logits, batch.labels)  
  
# 5. 总损失  
            total\_loss = (  
0.5 * distillation\_loss +   
0.5 * task\_loss  
            )  
  
# 6. 反向传播  
            total\_loss.backward()  
self.optimizer.step()  
  
defdistillation\_loss(self, teacher\_logits, student\_logits):  
"""蒸馏损失"""  
# 使用KL散度  
        teacher\_probs = F.softmax(teacher\_logits / self.temperature, dim=-1)  
        student\_log\_probs = F.log\_softmax(  
            student\_logits / self.temperature, dim=-1  
        )  
return F.kl\_div(student\_log\_probs, teacher\_probs, reduction='batchmean')  

弹性权重巩固(EWC)

  
classEWCIncrementalLearning:  
def\_\_init\_\_(self, model):  
self.model = model  
self.fisher\_matrix = {}  # Fisher信息矩阵  
self.optimal\_params = {}  # 最优参数  
  
defcompute\_fisher(self, data\_loader: DataLoader):  
"""计算Fisher信息矩阵"""  
self.model.eval()  
        fisher = {}  
  
for name, param inself.model.named\_parameters():  
            fisher[name] = torch.zeros\_like(param)  
  
for batch in data\_loader:  
self.model.zero\_grad()  
            output = self.model(batch)  
            loss = self.compute\_loss(output, batch.labels)  
            loss.backward()  
  
for name, param inself.model.named\_parameters():  
if param.grad isnotNone:  
                    fisher[name] += param.grad.data ** 2  
  
# 平均  
for name in fisher:  
            fisher[name] /= len(data\_loader)  
  
self.fisher\_matrix = fisher  
self.optimal\_params = {  
            name: param.clone()   
for name, param inself.model.named\_parameters()  
        }  
  
defewc\_loss(self, lambda\_ewc: float = 1000.0):  
"""EWC损失(防止遗忘)"""  
        loss = 0  
for name, param inself.model.named\_parameters():  
if name inself.fisher\_matrix:  
                optimal = self.optimal\_params[name]  
                fisher = self.fisher\_matrix[name]  
                loss += (fisher * (param - optimal) ** 2).sum()  
return lambda\_ewc * loss  
  
defincremental\_train(self, new\_data: DataLoader):  
"""增量训练"""  
for batch in new\_data:  
# 任务损失  
            task\_loss = self.task\_loss(batch)  
  
# EWC损失(防止遗忘)  
            ewc\_loss = self.ewc\_loss()  
  
# 总损失  
            total\_loss = task\_loss + ewc\_loss  
            total\_loss.backward()  
self.optimizer.step()  

最佳实践:

  • • 使用经验回放缓解灾难性遗忘
  • • 采用LoRA等参数高效方法
  • • 实现知识蒸馏保留旧知识
  • • 使用EWC等正则化方法
  • • 定期评估模型性能,检测遗忘

四、Agent学习机制篇(3题)

10|Agent 在线学习如何实现?在线学习与离线学习的区别和适用场景是什么?

参考答案:

区别对比:

| 特性 | 在线学习 | 离线学习 | | --- | --- | --- | | 训练时机 | 实时,数据到达即训练 | 批量,定期训练 | | 数据使用 | 逐样本或小批量 | 全量数据 | | 模型更新 | 持续更新 | 定期更新 | | 响应速度 | 快速适应新数据 | 需要重新训练 | | 计算资源 | 分散,持续使用 | 集中,批量使用 | | 适用场景 | 数据流、实时系统 | 批量数据、定期更新 |

实现方式:

在线梯度下降

  
classOnlineLearner:  
def\_\_init\_\_(self, model, learning\_rate: float = 0.01):  
self.model = model  
self.optimizer = torch.optim.SGD(  
            model.parameters(), lr=learning\_rate  
        )  
  
deflearn\_online(self, sample):  
"""在线学习单个样本"""  
# 1. 前向传播  
        prediction = self.model(sample.input)  
  
# 2. 计算损失  
        loss = self.compute\_loss(prediction, sample.label)  
  
# 3. 反向传播  
self.optimizer.zero\_grad()  
        loss.backward()  
self.optimizer.step()  
  
return loss.item()  
  
deflearn\_mini\_batch(self, batch):  
"""小批量在线学习"""  
# 处理小批量数据  
        predictions = self.model(batch.inputs)  
        loss = self.compute\_loss(predictions, batch.labels)  
  
self.optimizer.zero\_grad()  
        loss.backward()  
self.optimizer.step()  
  
return loss.item()  

流式数据处理

  
import asyncio  
from queue import Queue  
  
classStreamingOnlineLearner:  
def\_\_init\_\_(self, model, batch\_size: int = 32):  
self.model = model  
self.batch\_size = batch\_size  
self.data\_queue = Queue()  
self.is\_training = False  
  
asyncdefstart\_online\_learning(self):  
"""启动在线学习"""  
self.is\_training = True  
whileself.is\_training:  
# 收集批量数据  
            batch = awaitself.collect\_batch()  
  
if batch:  
# 训练  
                loss = self.train\_batch(batch)  
print(f"Batch loss: {loss}")  
  
await asyncio.sleep(0.1)  
  
asyncdefcollect\_batch(self):  
"""收集批量数据"""  
        batch = []  
whilelen(batch) < self.batch\_size:  
try:  
                sample = self.data\_queue.get\_nowait()  
                batch.append(sample)  
except:  
break  
  
return batch if batch elseNone  
  
defadd\_sample(self, sample):  
"""添加新样本"""  
self.data\_queue.put(sample)  

自适应学习率

  
classAdaptiveOnlineLearner:  
def\_\_init\_\_(self, model):  
self.model = model  
self.optimizer = torch.optim.Adam(model.parameters())  
self.performance\_history = []  
  
deflearn\_with\_adaptation(self, sample):  
"""自适应在线学习"""  
# 1. 学习  
        loss = self.learn\_online(sample)  
  
# 2. 评估性能  
        performance = self.evaluate\_performance()  
self.performance\_history.append(performance)  
  
# 3. 自适应调整学习率  
iflen(self.performance\_history) > 10:  
ifself.performance\_declining():  
# 性能下降,降低学习率  
self.adjust\_learning\_rate(0.9)  
elifself.performance\_stable():  
# 性能稳定,增加学习率  
self.adjust\_learning\_rate(1.1)  
  
defadjust\_learning\_rate(self, factor: float):  
"""调整学习率"""  
for param\_group inself.optimizer.param\_groups:  
            param\_group['lr'] *= factor  

在线学习Agent

  
classOnlineLearningAgent:  
def\_\_init\_\_(self, llm, learner):  
self.llm = llm  
self.learner = learner  
self.interaction\_history = []  
  
asyncdefinteract\_and\_learn(self, user\_input: str):  
"""交互并学习"""  
# 1. 生成响应  
        response = awaitself.llm.generate(user\_input)  
  
# 2. 获取用户反馈  
        feedback = awaitself.get\_user\_feedback(response)  
  
# 3. 记录交互  
self.interaction\_history.append({  
"input": user\_input,  
"response": response,  
"feedback": feedback  
        })  
  
# 4. 在线学习  
if feedback["is\_positive"]:  
# 正反馈,强化当前策略  
self.learner.reinforce(user\_input, response)  
else:  
# 负反馈,调整策略  
self.learner.adjust(user\_input, response, feedback)  
  
return response  

适用场景:

在线学习适合:

  • 数据流系统 :实时数据不断到达
  • 个性化推荐 :根据用户行为实时调整
  • A/B测试 :实时优化策略
  • 异常检测 :快速适应新异常模式

离线学习适合:

  • 批量数据处理 :定期收集数据后训练
  • 模型版本管理 :需要稳定版本
  • 资源受限 :无法持续训练
  • 合规要求 :需要审核训练数据

最佳实践:

  • • 实现小批量处理,平衡效率和实时性
  • • 使用自适应学习率,快速收敛
  • • 监控模型性能,及时发现问题
  • • 实现回滚机制,防止性能下降
  • • 平衡新旧数据,避免过拟合新数据

11|Agent 强化学习应用有哪些场景?如何将强化学习应用到 Agent 中?

参考答案:

应用场景:

工具选择优化

  • • 学习在什么情况下选择哪个工具
  • • 根据历史成功率优化选择策略
  • • 提高工具调用的准确性

对话策略优化

  • • 学习如何更好地与用户交互
  • • 优化对话流程和话术
  • • 提高用户满意度

任务规划优化

  • • 学习如何分解和规划任务
  • • 优化执行顺序
  • • 提高任务完成率

参数调优

  • • 学习最优的模型参数
  • • 优化temperature、top_p等参数
  • • 提高生成质量

实现方式:

RLHF(人类反馈强化学习)

  
classRLHFAgent:  
def\_\_init\_\_(self, base\_model, reward\_model):  
self.base\_model = base\_model  
self.reward\_model = reward\_model  
self.policy = self.create\_policy()  
  
deftrain\_with\_feedback(self, queries, human\_feedback):  
"""使用人类反馈训练"""  
for query, feedback inzip(queries, human\_feedback):  
# 1. 生成响应  
            response = self.policy.generate(query)  
  
# 2. 计算奖励  
            reward = self.reward\_model.compute\_reward(  
                query, response, feedback  
            )  
  
# 3. 更新策略  
self.policy.update(query, response, reward)  
  
defcreate\_policy(self):  
"""创建策略网络"""  
# 使用PPO等算法  
return PPOPolicy(self.base\_model)  

PPO(Proximal Policy Optimization)

  
classPPOPolicy:  
def\_\_init\_\_(self, model, learning\_rate: float = 3e-4):  
self.model = model  
self.optimizer = torch.optim.Adam(  
            model.parameters(), lr=learning\_rate  
        )  
self.old\_policy = None  
  
defupdate(self, states, actions, rewards, advantages):  
"""PPO更新"""  
# 1. 计算新策略概率  
        new\_probs = self.model.get\_action\_probs(states, actions)  
  
# 2. 计算旧策略概率  
        old\_probs = self.old\_policy.get\_action\_probs(states, actions)  
  
# 3. 计算比率  
        ratio = new\_probs / old\_probs  
  
# 4. PPO损失(带裁剪)  
        clip\_epsilon = 0.2  
        clipped\_ratio = torch.clamp(  
            ratio, 1 - clip\_epsilon, 1 + clip\_epsilon  
        )  
        loss = -torch.min(  
            ratio * advantages,  
            clipped\_ratio * advantages  
        ).mean()  
  
# 5. 更新  
self.optimizer.zero\_grad()  
        loss.backward()  
self.optimizer.step()  
  
# 6. 更新旧策略  
self.old\_policy = copy.deepcopy(self.model)  

工具选择RL

  
classToolSelectionRL:  
def\_\_init\_\_(self, agent, tools):  
self.agent = agent  
self.tools = tools  
self.q\_network = self.create\_q\_network()  
self.replay\_buffer = []  
  
defselect\_tool(self, state):  
"""使用Q-learning选择工具"""  
# 状态:当前查询、上下文、可用工具  
        state\_features = self.extract\_features(state)  
  
# Q值预测  
        q\_values = self.q\_network(state\_features)  
  
# ε-贪婪策略  
if random.random() < self.epsilon:  
# 探索:随机选择  
return random.choice(self.tools)  
else:  
# 利用:选择Q值最高的工具  
returnself.tools[q\_values.argmax()]  
  
deflearn\_from\_experience(self, state, action, reward, next\_state):  
"""从经验中学习"""  
# 1. 存储经验  
self.replay\_buffer.append({  
"state": state,  
"action": action,  
"reward": reward,  
"next\_state": next\_state  
        })  
  
# 2. 采样训练  
iflen(self.replay\_buffer) > 100:  
            batch = random.sample(self.replay\_buffer, 32)  
self.train\_q\_network(batch)  
  
deftrain\_q\_network(self, batch):  
"""训练Q网络"""  
        states = [e["state"] for e in batch]  
        actions = [e["action"] for e in batch]  
        rewards = [e["reward"] for e in batch]  
        next\_states = [e["next\_state"] for e in batch]  
  
# 当前Q值  
        current\_q = self.q\_network(states)[actions]  
  
# 目标Q值  
        next\_q = self.q\_network(next\_states).max()  
        target\_q = rewards + 0.9 * next\_q  # 折扣因子0.9  
  
# 损失  
        loss = F.mse\_loss(current\_q, target\_q)  
  
# 更新  
self.optimizer.zero\_grad()  
        loss.backward()  
self.optimizer.step()  

对话策略RL

  
classDialoguePolicyRL:  
def\_\_init\_\_(self, agent):  
self.agent = agent  
self.policy\_network = self.create\_policy\_network()  
self.value\_network = self.create\_value\_network()  
  
defselect\_action(self, dialogue\_state):  
"""选择对话动作"""  
# 动作空间:询问、确认、回答、结束等  
        action\_probs = self.policy\_network(dialogue\_state)  
        action = torch.multinomial(action\_probs, 1)  
return action  
  
defupdate\_policy(self, episode):  
"""更新策略"""  
        states, actions, rewards = episode  
  
# 计算回报  
        returns = self.compute\_returns(rewards)  
  
# 计算优势  
        values = self.value\_network(states)  
        advantages = returns - values  
  
# 策略梯度  
        action\_probs = self.policy\_network(states)  
        selected\_probs = action\_probs.gather(1, actions)  
        policy\_loss = -torch.log(selected\_probs) * advantages  
  
# 价值损失  
        value\_loss = F.mse\_loss(values, returns)  
  
# 总损失  
        total\_loss = policy\_loss.mean() + value\_loss  
  
# 更新  
self.optimizer.zero\_grad()  
        total\_loss.backward()  
self.optimizer.step()  

最佳实践:

  • • 设计合适的奖励函数,引导学习目标
  • • 使用经验回放提高样本效率
  • • 实现探索-利用平衡(ε-贪婪、UCB等)
  • • 监控训练过程,防止策略崩溃
  • • 结合监督学习预训练,加速收敛

12|Agent 时间序列处理如何实现?时间序列数据在 Agent 中的应用场景有哪些?

参考答案:

应用场景:

对话历史管理

  • • 维护时间顺序的对话记录
  • • 分析对话趋势
  • • 识别话题转换

用户行为分析

  • • 跟踪用户行为序列
  • • 预测用户意图
  • • 个性化推荐

系统监控

  • • 监控Agent性能指标
  • • 检测异常模式
  • • 预测系统负载

任务执行跟踪

  • • 记录任务执行时间线
  • • 分析任务完成模式
  • • 优化执行策略

实现方式:

时间序列记忆管理

  
from datetime import datetime  
from typing importList, Dict  
  
classTimeSeriesMemory:  
def\_\_init\_\_(self, max\_length: int = 1000):  
self.memory: List[Dict] = []  
self.max\_length = max\_length  
  
defadd\_event(self, event\_type: str, data: Dict, timestamp: datetime = None):  
"""添加时间序列事件"""  
if timestamp isNone:  
            timestamp = datetime.now()  
  
        event = {  
"timestamp": timestamp,  
"type": event\_type,  
"data": data  
        }  
  
self.memory.append(event)  
  
# 限制长度  
iflen(self.memory) > self.max\_length:  
self.memory = self.memory[-self.max\_length:]  
  
defget\_events\_in\_range(self, start: datetime, end: datetime) -> List[Dict]:  
"""获取时间范围内的事件"""  
return [  
            event for event inself.memory  
if start <= event["timestamp"] <= end  
        ]  
  
defget\_recent\_events(self, n: int = 10) -> List[Dict]:  
"""获取最近N个事件"""  
returnself.memory[-n:]  
  
defanalyze\_trend(self, event\_type: str, window: int = 10):  
"""分析趋势"""  
        events = [  
            e for e inself.memory   
if e["type"] == event\_type  
        ][-window:]  
  
iflen(events) < 2:  
returnNone  
  
# 计算趋势(简化:线性回归斜率)  
        timestamps = [e["timestamp"].timestamp() for e in events]  
        values = [e["data"].get("value", 0) for e in events]  
  
# 线性回归  
        slope = self.compute\_slope(timestamps, values)  
return {"trend": "increasing"if slope > 0else"decreasing", "slope": slope}  

时间序列预测

  
import numpy as np  
from sklearn.linear\_model import LinearRegression  
  
classTimeSeriesPredictor:  
def\_\_init\_\_(self, window\_size: int = 10):  
self.window\_size = window\_size  
self.model = LinearRegression()  
  
defpredict\_next(self, series: List[float]) -> float:  
"""预测下一个值"""  
iflen(series) < self.window\_size:  
return series[-1] if series else0.0  
  
# 准备特征(滑动窗口)  
        X = []  
        y = []  
for i inrange(len(series) - self.window\_size):  
            X.append(series[i:i+self.window\_size])  
            y.append(series[i+self.window\_size])  
  
# 训练  
self.model.fit(X, y)  
  
# 预测  
        last\_window = series[-self.window\_size:]  
        prediction = self.model.predict([last\_window])[0]  
return prediction  
  
defpredict\_sequence(self, series: List[float], n: int = 5) -> List[float]:  
"""预测未来N个值"""  
        predictions = []  
        current\_series = series.copy()  
  
for \_ inrange(n):  
            next\_value = self.predict\_next(current\_series)  
            predictions.append(next\_value)  
            current\_series.append(next\_value)  
  
return predictions  

时间序列异常检测

  
classTimeSeriesAnomalyDetector:  
def\_\_init\_\_(self, threshold: float = 2.0):  
self.threshold = threshold  
self.history = []  
  
defdetect\_anomaly(self, value: float, timestamp: datetime) -> bool:  
"""检测异常"""  
iflen(self.history) < 10:  
self.history.append((timestamp, value))  
returnFalse  
  
# 计算统计量  
        values = [v for \_, v inself.history]  
        mean = np.mean(values)  
        std = np.std(values)  
  
# Z-score检测  
        z\_score = abs(value - mean) / (std + 1e-6)  
  
if z\_score > self.threshold:  
returnTrue  
  
self.history.append((timestamp, value))  
# 保持历史长度  
iflen(self.history) > 100:  
self.history = self.history[-100:]  
  
returnFalse  

时间序列Agent

  
classTimeSeriesAgent:  
def\_\_init\_\_(self, llm, memory: TimeSeriesMemory):  
self.llm = llm  
self.memory = memory  
self.predictor = TimeSeriesPredictor()  
self.anomaly\_detector = TimeSeriesAnomalyDetector()  
  
asyncdefprocess\_with\_temporal\_context(self, query: str):  
"""使用时间上下文处理"""  
# 1. 获取时间序列上下文  
        recent\_events = self.memory.get\_recent\_events(20)  
  
# 2. 分析趋势  
        trends = {}  
for event\_type inset(e["type"] for e in recent\_events):  
            trend = self.memory.analyze\_trend(event\_type)  
if trend:  
                trends[event\_type] = trend  
  
# 3. 检测异常  
        anomalies = []  
for event in recent\_events:  
if"value"in event["data"]:  
ifself.anomaly\_detector.detect\_anomaly(  
                    event["data"]["value"],   
                    event["timestamp"]  
                ):  
                    anomalies.append(event)  
  
# 4. 构建时间上下文提示  
        temporal\_context = self.build\_temporal\_context(  
            recent\_events, trends, anomalies  
        )  
  
# 5. 生成响应  
        response = awaitself.llm.generate(  
f"上下文:{temporal\_context}\n\n问题:{query}"  
        )  
  
# 6. 记录交互  
self.memory.add\_event("interaction", {  
"query": query,  
"response": response  
        })  
  
return response  
  
defbuild\_temporal\_context(self, events, trends, anomalies):  
"""构建时间上下文"""  
        context = f"最近{len(events)}个事件:\n"  
for event in events[-5:]:  # 最近5个  
            context += f"- {event['type']}: {event['data']}\n"  
  
if trends:  
            context += "\n趋势分析:\n"  
for event\_type, trend in trends.items():  
                context += f"- {event\_type}: {trend['trend']}\n"  
  
if anomalies:  
            context += "\n异常检测:\n"  
for anomaly in anomalies:  
                context += f"- {anomaly['type']}: {anomaly['data']}\n"  
  
return context  

最佳实践:

  • • 使用滑动窗口处理时间序列
  • • 实现时间索引,快速查询
  • • 定期清理旧数据,控制内存
  • • 使用时间序列模型(LSTM、Transformer)进行预测
  • • 实现异常检测,及时发现问题

五、Agent数据集成篇(3题)

13|Agent 知识图谱集成如何实现?知识图谱如何增强 Agent 的能力?

参考答案:

增强能力:

结构化知识

  • • 实体关系明确
  • • 支持多跳推理
  • • 知识可解释

关系推理

  • • 沿着图结构推理
  • • 发现隐含关系
  • • 支持复杂查询

知识验证

  • • 验证生成内容的正确性
  • • 检测知识冲突
  • • 提高可靠性

实现方式:

知识图谱检索

  
from typing importList, Dict  
import networkx as nx  
  
classKnowledgeGraphAgent:  
def\_\_init\_\_(self, llm, kg):  
self.llm = llm  
self.kg = kg  # NetworkX图或图数据库连接  
  
asyncdefquery\_with\_kg(self, query: str):  
"""使用知识图谱查询"""  
# 1. 从查询中提取实体  
        entities = awaitself.extract\_entities(query)  
  
# 2. 在知识图谱中检索  
        subgraph = self.retrieve\_subgraph(entities)  
  
# 3. 转换为文本上下文  
        context = self.subgraph\_to\_text(subgraph)  
  
# 4. 生成回答  
        response = awaitself.llm.generate(  
f"基于以下知识图谱信息回答问题:\n{context}\n\n问题:{query}"  
        )  
  
return response  
  
asyncdefextract\_entities(self, query: str) -> List[str]:  
"""提取实体"""  
# 使用NER或LLM提取  
        prompt = f"从以下文本中提取实体:{query}"  
        entities = awaitself.llm.extract\_entities(prompt)  
return entities  
  
defretrieve\_subgraph(self, entities: List[str], hops: int = 2):  
"""检索子图"""  
        subgraph\_nodes = set(entities)  
  
# 多跳检索  
for \_ inrange(hops):  
            new\_nodes = set()  
for node in subgraph\_nodes:  
# 获取邻居节点  
                neighbors = list(self.kg.neighbors(node))  
                new\_nodes.update(neighbors)  
            subgraph\_nodes.update(new\_nodes)  
  
# 构建子图  
        subgraph = self.kg.subgraph(subgraph\_nodes)  
return subgraph  
  
defsubgraph\_to\_text(self, subgraph) -> str:  
"""子图转文本"""  
        text = ""  
for node in subgraph.nodes():  
# 节点信息  
            text += f"实体:{node}\n"  
# 关系信息  
for neighbor in subgraph.neighbors(node):  
                edge\_data = subgraph[node][neighbor]  
                relation = edge\_data.get("relation", "related\_to")  
                text += f"  -{relation}-> {neighbor}\n"  
return text  

图数据库集成

  
from neo4j import GraphDatabase  
  
classNeo4jAgent:  
def\_\_init\_\_(self, llm, uri: str, user: str, password: str):  
self.llm = llm  
self.driver = GraphDatabase.driver(uri, auth=(user, password))  
  
defclose(self):  
self.driver.close()  
  
asyncdefquery\_cypher(self, query: str, cypher\_query: str):  
"""使用Cypher查询"""  
withself.driver.session() as session:  
            result = session.run(cypher\_query)  
            records = [record for record in result]  
  
# 转换为文本  
        context = self.records\_to\_text(records)  
  
# 生成回答  
        response = awaitself.llm.generate(  
f"知识图谱查询结果:\n{context}\n\n问题:{query}"  
        )  
  
return response  
  
defrecords\_to\_text(self, records) -> str:  
"""记录转文本"""  
        text = ""  
for record in records:  
# 处理记录  
for key, value in record.items():  
                text += f"{key}: {value}\n"  
return text  
  
asyncdefmulti\_hop\_reasoning(self, start\_entity: str,   
                                 target\_relation: str):  
"""多跳推理"""  
        cypher = f"""  
        MATCH path = (start)-[*1..3]->(end)  
        WHERE start.name = '{start\_entity}'  
        AND end.name CONTAINS '{target\_relation}'  
        RETURN path  
        LIMIT 10  
        """  
  
withself.driver.session() as session:  
            result = session.run(cypher)  
            paths = [record["path"] for record in result]  
  
return paths  

知识验证

  
classKnowledgeVerificationAgent:  
def\_\_init\_\_(self, llm, kg):  
self.llm = llm  
self.kg = kg  
  
asyncdefverify\_response(self, query: str, response: str) -> Dict:  
"""验证回答"""  
# 1. 从回答中提取声明  
        claims = awaitself.extract\_claims(response)  
  
# 2. 在知识图谱中验证  
        verification\_results = []  
for claim in claims:  
            verified = awaitself.verify\_claim(claim)  
            verification\_results.append({  
"claim": claim,  
"verified": verified["is\_true"],  
"evidence": verified["evidence"]  
            })  
  
# 3. 生成验证报告  
        report = self.generate\_report(verification\_results)  
  
return {  
"response": response,  
"verification": verification\_results,  
"report": report  
        }  
  
asyncdefverify\_claim(self, claim: str) -> Dict:  
"""验证单个声明"""  
# 提取实体和关系  
        entities = awaitself.extract\_entities(claim)  
        relations = awaitself.extract\_relations(claim)  
  
# 在知识图谱中查找  
        evidence = []  
for entity1 in entities:  
for entity2 in entities:  
if entity1 != entity2:  
# 检查关系  
ifself.kg.has\_edge(entity1, entity2):  
                        edge\_data = self.kg[entity1][entity2]  
                        evidence.append({  
"entity1": entity1,  
"entity2": entity2,  
"relation": edge\_data.get("relation")  
                        })  
  
        is\_true = len(evidence) > 0  
return {"is\_true": is\_true, "evidence": evidence}  

Graph RAG集成

  
classGraphRAGAgent:  
def\_\_init\_\_(self, llm, kg, vector\_store):  
self.llm = llm  
self.kg = kg  
self.vector\_store = vector\_store  
  
asyncdefhybrid\_retrieval(self, query: str):  
"""混合检索(向量+图谱)"""  
# 1. 向量检索  
        vector\_docs = self.vector\_store.similarity\_search(query, k=5)  
  
# 2. 图谱检索  
        entities = awaitself.extract\_entities(query)  
        kg\_subgraph = self.retrieve\_subgraph(entities)  
        kg\_text = self.subgraph\_to\_text(kg\_subgraph)  
  
# 3. 融合结果  
        context = f"""  
        向量检索结果:  
{self.docs\_to\_text(vector\_docs)}  
  
        知识图谱结果:  
{kg\_text}  
        """  
  
# 4. 生成回答  
        response = awaitself.llm.generate(  
f"上下文:{context}\n\n问题:{query}"  
        )  
  
return response  

最佳实践:

  • • 使用图数据库(Neo4j、ArangoDB)存储知识图谱
  • • 实现多跳推理,发现深层关系
  • • 结合向量检索和图谱检索(Graph RAG)
  • • 实现知识验证,提高可靠性
  • • 定期更新知识图谱,保持时效性

14|Agent 向量数据库应用有哪些场景?如何将向量数据库集成到 Agent 中?

参考答案:

应用场景:

语义检索

  • • 根据语义相似度检索文档
  • • 支持自然语言查询
  • • 提高检索准确性

长期记忆管理

  • • 存储历史对话的向量表示
  • • 快速检索相关历史
  • • 支持上下文增强

知识库检索

  • • 从知识库中检索相关信息
  • • 支持RAG应用
  • • 提高回答准确性

相似案例检索

  • • 检索相似的历史案例
  • • 参考历史解决方案
  • • 提高处理效率

实现方式:

向量数据库集成

  
from langchain.vectorstores import Chroma, Pinecone, FAISS  
from langchain.embeddings import OpenAIEmbeddings  
from typing importList  
  
classVectorDBAgent:  
def\_\_init\_\_(self, llm, vector\_store\_type: str = "chroma"):  
self.llm = llm  
self.embeddings = OpenAIEmbeddings()  
  
# 初始化向量数据库  
if vector\_store\_type == "chroma":  
self.vector\_store = Chroma(  
                embedding\_function=self.embeddings,  
                persist\_directory="./vector\_db"  
            )  
elif vector\_store\_type == "faiss":  
self.vector\_store = FAISS.from\_texts(  
                [""], self.embeddings  
            )  
  
defadd\_documents(self, documents: List[str], metadatas: List[Dict] = None):  
"""添加文档到向量数据库"""  
self.vector\_store.add\_texts(  
            texts=documents,  
            metadatas=metadatas  
        )  
  
asyncdefretrieve\_and\_generate(self, query: str, k: int = 5):  
"""检索并生成"""  
# 1. 向量检索  
        docs = self.vector\_store.similarity\_search(query, k=k)  
  
# 2. 构建上下文  
        context = self.docs\_to\_text(docs)  
  
# 3. 生成回答  
        response = awaitself.llm.generate(  
f"基于以下信息回答问题:\n{context}\n\n问题:{query}"  
        )  
  
return response  
  
defdocs\_to\_text(self, docs) -> str:  
"""文档转文本"""  
return"\n\n".join([doc.page\_content for doc in docs])  

混合检索

  
classHybridRetrievalAgent:  
def\_\_init\_\_(self, llm, vector\_store, keyword\_index):  
self.llm = llm  
self.vector\_store = vector\_store  # 向量检索  
self.keyword\_index = keyword\_index  # 关键词检索  
  
asyncdefhybrid\_search(self, query: str, k: int = 10):  
"""混合检索"""  
# 1. 向量检索  
        vector\_docs = self.vector\_store.similarity\_search(query, k=k)  
  
# 2. 关键词检索  
        keyword\_docs = self.keyword\_index.search(query, k=k)  
  
# 3. 结果融合(Reciprocal Rank Fusion)  
        fused\_docs = self.rrf\_fusion(vector\_docs, keyword\_docs)  
  
return fused\_docs[:k]  
  
defrrf\_fusion(self, list1: List, list2: List, k: int = 60) -> List:  
"""Reciprocal Rank Fusion"""  
        scores = {}  
  
# 计算第一个列表的分数  
for rank, doc inenumerate(list1, 1):  
            doc\_id = doc.metadata.get("id", id(doc))  
            scores[doc\_id] = scores.get(doc\_id, 0) + 1 / (k + rank)  
  
# 计算第二个列表的分数  
for rank, doc inenumerate(list2, 1):  
            doc\_id = doc.metadata.get("id", id(doc))  
            scores[doc\_id] = scores.get(doc\_id, 0) + 1 / (k + rank)  
  
# 按分数排序  
        sorted\_docs = sorted(  
set(list1 + list2),  
            key=lambda doc: scores.get(  
                doc.metadata.get("id", id(doc)), 0  
            ),  
            reverse=True  
        )  
  
return sorted\_docs  

记忆管理

  
classVectorMemoryAgent:  
def\_\_init\_\_(self, llm, vector\_store):  
self.llm = llm  
self.vector\_store = vector\_store  
self.conversation\_buffer = []  
  
asyncdefprocess\_with\_memory(self, query: str):  
"""使用向量记忆处理"""  
# 1. 从向量数据库检索相关历史  
        relevant\_memories = self.vector\_store.similarity\_search(  
            query, k=5  
        )  
  
# 2. 构建记忆上下文  
        memory\_context = self.memories\_to\_text(relevant\_memories)  
  
# 3. 生成回答  
        response = awaitself.llm.generate(  
f"相关历史:\n{memory\_context}\n\n当前问题:{query}"  
        )  
  
# 4. 保存当前交互到向量数据库  
self.save\_interaction(query, response)  
  
return response  
  
defsave\_interaction(self, query: str, response: str):  
"""保存交互到向量数据库"""  
# 组合查询和回答  
        interaction\_text = f"Q: {query}\nA: {response}"  
  
# 添加到向量数据库  
self.vector\_store.add\_texts(  
            texts=[interaction\_text],  
            metadatas=[{  
"type": "interaction",  
"timestamp": datetime.now().isoformat()  
            }]  
        )  

多模态向量检索

  
classMultimodalVectorAgent:  
def\_\_init\_\_(self, llm, vector\_store, image\_encoder):  
self.llm = llm  
self.vector\_store = vector\_store  
self.image\_encoder = image\_encoder  
  
asyncdefsearch\_multimodal(self, query: str, image: bytes = None):  
"""多模态检索"""  
if image:  
# 图像检索  
            image\_vector = self.image\_encoder.encode(image)  
            image\_docs = self.vector\_store.similarity\_search\_by\_vector(  
                image\_vector, k=5  
            )  
else:  
            image\_docs = []  
  
# 文本检索  
        text\_docs = self.vector\_store.similarity\_search(query, k=5)  
  
# 融合结果  
        all\_docs = self.merge\_results(text\_docs, image\_docs)  
  
# 生成回答  
        context = self.docs\_to\_text(all\_docs)  
        response = awaitself.llm.generate(  
f"上下文:{context}\n\n问题:{query}"  
        )  
  
return response  

最佳实践:

  • • 选择合适的向量数据库(Chroma、Pinecone、Weaviate等)
  • • 使用高质量的embedding模型
  • • 实现混合检索(向量+关键词)提高召回率
  • • 定期更新向量索引,保持时效性
  • • 优化chunk大小和overlap,平衡检索精度和上下文长度

15|Agent 图数据库应用如何实现?图数据库在 Agent 中的优势是什么?

参考答案:

优势:

关系查询优势

  • • 高效的多跳关系查询
  • • 支持复杂图遍历
  • • 关系查询性能优于关系数据库

结构化知识

  • • 实体-关系-实体三元组
  • • 知识结构清晰
  • • 易于理解和维护

推理能力

  • • 支持路径查询
  • • 发现隐含关系
  • • 支持图算法(PageRank、社区发现等)

灵活性

  • • 动态添加节点和边
  • • 无需预定义schema
  • • 易于扩展

实现方式:

Neo4j集成

  
from neo4j import GraphDatabase  
from typing importList, Dict  
  
classNeo4jAgent:  
def\_\_init\_\_(self, llm, uri: str, user: str, password: str):  
self.llm = llm  
self.driver = GraphDatabase.driver(uri, auth=(user, password))  
  
defclose(self):  
self.driver.close()  
  
asyncdefquery\_with\_graph(self, query: str):  
"""使用图数据库查询"""  
# 1. 提取实体  
        entities = awaitself.extract\_entities(query)  
  
# 2. 构建Cypher查询  
        cypher = self.build\_cypher\_query(entities, query)  
  
# 3. 执行查询  
        results = self.execute\_cypher(cypher)  
  
# 4. 转换为文本  
        context = self.results\_to\_text(results)  
  
# 5. 生成回答  
        response = awaitself.llm.generate(  
f"图数据库查询结果:\n{context}\n\n问题:{query}"  
        )  
  
return response  
  
defbuild\_cypher\_query(self, entities: List[str], query: str) -> str:  
"""构建Cypher查询"""  
iflen(entities) == 1:  
# 单实体查询:查找相关实体  
returnf"""  
            MATCH (n)-[r]->(m)  
            WHERE n.name = '{entities[0]}'  
            RETURN n, r, m  
            LIMIT 20  
            """  
eliflen(entities) >= 2:  
# 多实体查询:查找关系路径  
            entity\_pairs = ", ".join([  
f"'{e}'"for e in entities  
            ])  
returnf"""  
            MATCH path = (n)-[*1..3]->(m)  
            WHERE n.name IN [{entity\_pairs}]  
            AND m.name IN [{entity\_pairs}]  
            RETURN path  
            LIMIT 10  
            """  
else:  
# 通用查询  
return"""  
            MATCH (n)  
            RETURN n  
            LIMIT 10  
            """  
  
defexecute\_cypher(self, cypher: str) -> List[Dict]:  
"""执行Cypher查询"""  
withself.driver.session() as session:  
            result = session.run(cypher)  
return [record.data() for record in result]  
  
defresults\_to\_text(self, results: List[Dict]) -> str:  
"""结果转文本"""  
        text = ""  
for i, record inenumerate(results, 1):  
            text += f"结果 {i}:\n"  
for key, value in record.items():  
ifisinstance(value, dict):  
                    text += f"  {key}: {value}\n"  
else:  
                    text += f"  {key}: {value}\n"  
            text += "\n"  
return text  

知识图谱构建

  
classKnowledgeGraphBuilder:  
def\_\_init\_\_(self, driver):  
self.driver = driver  
  
defbuild\_from\_text(self, text: str):  
"""从文本构建知识图谱"""  
# 1. 提取实体和关系  
        entities, relations = self.extract\_entities\_relations(text)  
  
# 2. 创建节点  
for entity in entities:  
self.create\_node(entity)  
  
# 3. 创建关系  
for relation in relations:  
self.create\_relation(relation)  
  
defcreate\_node(self, entity: Dict):  
"""创建节点"""  
        cypher = f"""  
        MERGE (n:{entity['type']} {{name: $name}})  
        SET n += $properties  
        """  
withself.driver.session() as session:  
            session.run(cypher,   
                       name=entity['name'],  
                       properties=entity.get('properties', {}))  
  
defcreate\_relation(self, relation: Dict):  
"""创建关系"""  
        cypher = f"""  
        MATCH (a {{name: $from}})  
        MATCH (b {{name: $to}})  
        MERGE (a)-[r:{relation['type']}]->(b)  
        SET r += $properties  
        """  
withself.driver.session() as session:  
            session.run(cypher,  
                       from\_node=relation['from'],  
                       to\_node=relation['to'],  
                       properties=relation.get('properties', {}))  

图算法应用

  
classGraphAlgorithmAgent:  
def\_\_init\_\_(self, driver):  
self.driver = driver  
  
deffind\_shortest\_path(self, start: str, end: str):  
"""最短路径"""  
        cypher = f"""  
        MATCH path = shortestPath(  
            (start {{name: '{start}'}})-[*]-(end {{name: '{end}'}})  
        )  
        RETURN path  
        """  
withself.driver.session() as session:  
            result = session.run(cypher)  
return [record["path"] for record in result]  
  
deffind\_communities(self):  
"""社区发现"""  
        cypher = """  
        CALL gds.louvain.stream({  
            nodeProjection: '*',  
            relationshipProjection: '*'  
        })  
        YIELD nodeId, communityId  
        RETURN nodeId, communityId  
        """  
withself.driver.session() as session:  
            result = session.run(cypher)  
return [record.data() for record in result]  
  
defcalculate\_centrality(self, node\_name: str):  
"""计算中心性"""  
        cypher = f"""  
        MATCH (n {{name: '{node\_name}'}})  
        WITH n,   
             size((n)-[]->()) as out\_degree,  
             size((n)<-[]-()) as in\_degree  
        RETURN n.name, out\_degree, in\_degree,   
               (out\_degree + in\_degree) as total\_degree  
        """  
withself.driver.session() as session:  
            result = session.run(cypher)  
return [record.data() for record in result]  

图RAG集成

  
classGraphRAGAgent:  
def\_\_init\_\_(self, llm, graph\_db, vector\_db):  
self.llm = llm  
self.graph\_db = graph\_db  
self.vector\_db = vector\_db  
  
asyncdefhybrid\_retrieval(self, query: str):  
"""混合检索(图+向量)"""  
# 1. 向量检索  
        vector\_docs = self.vector\_db.similarity\_search(query, k=5)  
  
# 2. 图检索  
        entities = awaitself.extract\_entities(query)  
        graph\_results = self.graph\_db.query\_entities(entities)  
  
# 3. 融合结果  
        context = f"""  
        向量检索结果:  
{self.docs\_to\_text(vector\_docs)}  
  
        图数据库结果:  
{self.graph\_results\_to\_text(graph\_results)}  
        """  
  
# 4. 生成回答  
        response = awaitself.llm.generate(  
f"上下文:{context}\n\n问题:{query}"  
        )  
  
return response  

最佳实践:

  • • 选择合适的图数据库(Neo4j、ArangoDB、Amazon Neptune等)
  • • 设计合理的图schema,平衡查询性能和存储
  • • 使用图算法(路径查询、社区发现、中心性)增强能力
  • • 结合向量数据库实现Graph RAG
  • • 定期维护图数据,保持数据质量

总结

本文精选了15道关于Agent高级技术的高频面试题,涵盖了:

性能优化 :流式输出处理、并发处理、异步调用

架构设计 :负载均衡、扩展性设计、模型选择策略

模型管理 :模型切换、模型融合、增量学习

学习机制 :在线学习、强化学习应用、时间序列处理

数据集成 :知识图谱集成、向量数据库应用、图数据库应用

核心要点:

  • • 性能优化是Agent系统的重要考量
  • • 架构设计需要兼顾扩展性和可维护性
  • • 模型管理涉及切换、融合和学习策略
  • • 学习机制决定了Agent的适应能力
  • • 数据集成扩展了Agent的知识边界

面试建议:

  • • 掌握Agent性能优化的关键技术
  • • 理解Agent架构设计的原则和方法
  • • 熟悉模型管理和学习机制
  • • 了解数据集成在Agent中的应用
  • • 关注最新技术趋势和最佳实践

希望这些题目能帮助您更好地准备大模型应用岗位的面试!

picture.image

picture.image

0
0
0
0
关于作者
关于作者

文章

0

获赞

0

收藏

0

相关资源
VikingDB:大规模云原生向量数据库的前沿实践与应用
本次演讲将重点介绍 VikingDB 解决各类应用中极限性能、规模、精度问题上的探索实践,并通过落地的案例向听众介绍如何在多模态信息检索、RAG 与知识库等领域进行合理的技术选型和规划。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论