字节跳动基于Apache Atlas的近实时消息同步能力优化 | 社区征文

数据治理

文 | 洪剑大滨 来自字节跳动数据平台开发套件团队

背景

动机

字节数据中台DataLeap的Data Catalog系统基于Apache Atlas搭建,其中Atlas通过Kafka获取外部系统的元数据变更消息。在开源版本中,每台服务器支持的Kafka Consumer数量有限,在每日百万级消息体量下,经常有长延时等问题,影响用户体验。

在2020年底,我们针对Atlas的消息消费部分做了重构,将消息的消费和处理从后端服务中剥离出来,并编写了Flink任务承担这部分工作,比较好的解决了扩展性和性能问题。然而,到2021年年中,团队开始重点投入私有化部署和火山公有云支持,对于Flink集群的依赖引入了可维护性的痛点。

在仔细的分析了使用场景和需求,并调研了现成的解决方案后,我们决定投入人力自研一个消息处理框架。当前这个框架很好的支持了字节内部以及ToB场景中Data Catalog对于消息消费和处理的场景。

本文会详细介绍框架解决的问题,整体的设计,以及实现中的关键决定。

需求定义

使用下面的表格将具体场景定义清楚。

需求维度需求描述
吞吐量每日百万级别,每秒峰值>100
服务质量(QoS)至少一次
延迟消息支持将消息标记为延迟处理,最高延迟1 min
重试自动对处理失败消息重试,重试次数可定义
并行与顺序处理Partition内部支持按照某个Key重新分组,不同Key之间接受并行,同一个Key要求顺序处理
消息处理时间不同类型的消息,处理时间会有较大差别,从<1s~1min
封装确保不丢消息的前提下,依赖框架做Offset的提交,业务侧只需要编写消息的处理逻辑;另外,将系统状态以Metric方式暴露
轻量支持与后端服务混合部署,不引入额外的维护成本

相关工作

在启动自研之前,我们评估了两个比较相关的方案,分别是Flink和Kafka Streaming。

Flink是我们之前生产上使用的方案,在能力上是符合要求的,最主要的问题是长期的可维护性。在公有云场景,那个阶段Flink服务在火山引擎上还没有发布,我们自己的服务又有严格的时间线,所以必须考虑替代;在私有化场景,我们不确认客户环境一定有Flink集群,即使部署的数据底座中带有Flink,后续的维护也是个头疼的问题。另外一个角度,作为通用流式处理框架,Flink的大部分功能我们并没有用到,对于单条消息的流转路径,其实只是简单的读取和处理,使用Flink有些“杀鸡用牛刀”了。

另一个比较标准的方案是Kafka Streaming。作为Kafka官方提供的框架,对于流式处理的语义有较好的支持,也满足我们对于轻量的诉求。最终没有采用的主要考虑点是两个:

  • 对于Offset的维护不够灵活:我们的场景不能使用自动提交(会丢消息),而对于同一个Partition中的数据又要求一定程度的并行处理,使用Kafka Streaming的原生接口较难支持。
  • 与Kafka强绑定:大部分场景下,我们团队不是元数据消息队列的拥有者,也有团队使用RocketMQ等提供元数据变更,在应用层,我们希望使用同一套框架兼容。
设计

概念说明

  • MQ Type:Message Queue的类型,比如Kafka与RocketMQ。后续内容以Kafka为主,设计一定程度兼容其他MQ。

  • Topic:一批消息的集合,包含多个Partition,可以被多个Consumer Group消费。

  • Consumer Group:一组Consumer,同一Group内的Consumer数据不会重复消费。

  • Consumer:消费消息的最小单位,属于某个Consumer Group。

  • Partition:Topic中的一部分数据,同一Partition内消息有序。同一Consumer Group内,一个Partition只会被其中一个Consumer消费。

  • Event:由Topic中的消息转换而来,部分属性如下。

    • Event Type:消息的类型定义,会与Processor有对应关系;
    • Event Key:包含消息Topic、Partition、Offset等元数据,用来对消息进行Hash操作;
  • Processor:消息处理的单元,针对某个Event Type定制的业务逻辑。

  • Task:消费消息并处理的一条Pipeline,Task之间资源是相互独立的。

框架架构

picture.image

整个框架主要由MQ Consumer, Message Processor和State Manager组成。

  • MQ Consumer:负责从Kafka Topic拉取消息,并根据Event Key将消息投放到内部队列,如果消息需要延时消费,会被投放到对应的延时队列;该模块还负责定时查询State Manager中记录的消息状态,并根据返回提交消息Offset;上报与消息消费相关的Metric。
  • Message Processor:负责从队列中拉取消息并异步进行处理,它会将消息的处理结果更新给State Manager,同时上报与消息处理相关的Metric。
  • State Manager:负责维护每个Kafka Partition的消息状态,并暴露当前应提交的Offset信息给MQ Consumer。
实现

线程模型

picture.image

每个Task可以运行在一台或多台实例,建议部署到多台机器,以获得更好的性能和容错能力。

每台实例中,存在两组线程池:

  • Consumer Pool:负责管理MQ Consumer Thread的生命周期,当服务启动时,根据配置拉起一定规模的线程,并在服务关闭时确保每个Thread安全退出或者超时停止。整体有效Thread的上限与Topic的Partition的总数有关。
  • Processor Pool:负责管理Message Processor Thread的生命周期,当服务启动时,根据配置拉起一定规模的线程,并在服务关闭时确保每个Thread安全退出或者超时停止。可以根据Event Type所需要处理的并行度来灵活配置。

两类Thread的性质分别如下:

  • Consumer Thread:每个MQ Consumer会封装一个Kafka Consumer,可以消费0个或者多个Partition。根据Kafka的机制,当MQ Consumer Thread的个数超过Partition的个数时,当前Thread不会有实际流量。
  • Processor Thread:唯一对应一个内部的队列,并以FIFO的方式消费和处理其中的消息。

StateManager

picture.image

在State Manager中,会为每个Partition维护一个优先队列(最小堆),队列中的信息是Offset,两个优先队列的职责如下:

  • 处理中的队列:一条消息转化为Event后,MQ Consumer会调用StateManager接口,将消息Offset 插入该队列。
  • 处理完的队列:一条消息处理结束或最终失败,Message Processor会调用StateManager接口,将消息Offset插入该队列。

MQ Consumer会周期性的检查当前可以Commit的Offset,情况枚举如下:

  • 处理中的队列堆顶 < 处理完的队列堆顶或者处理完的队列为空:代表当前消费回来的消息还在处理过程中,本轮不做Offset提交。
  • 处理中的队列堆顶 = 处理完的队列堆顶:表示当前消息已经处理完,两边同时出队,并记录当前堆顶为可提交的Offset,重复检查过程。
  • 处理中的队列堆顶 > 处理完的队列堆顶:异常情况,通常是数据回放到某些中间状态,将处理完的队列堆顶出堆。

注意:当发生Consumer的Rebalance时,需要将对应Partition的队列清空。

KeyBy与Delay Processing的支持

因源头的Topic和消息格式有可能不可控制,所以MQ Consumer的职责之一是将消息统一封装为Event。

根据需求,会从原始消息中拼装出Event Key,对Key取Hash后,相同结果的Event会进入同一个队列,可以保证分区内的此类事件处理顺序的稳定,同时将消息的消费与处理解耦,支持增大内部队列数量来增加吞吐。

Event中也支持设置是否延迟处理属性,可以根据Event Time延迟固定时间后处理,需要被延迟处理的事件会被发送到有界延迟队列中,有界延迟队列的实现继承了DelayQueue,限制DelayQueue长度, 达到限定值入队会被阻塞。

异常处理

Processor在消息处理过程中,可能遇到各种异常情况,设计框架的动机之一就是为业务逻辑的编写者屏蔽掉这种复杂度。Processor相关框架的逻辑会与State Manager协作,处理异常并充分暴露状态。比较典型的异常情况以及处理策略如下:

  • 处理消息失败:自动触发重试,重试到用户设置的最大次数或默认值后会将消息失败状态通知State Manager。
  • 处理消息超时:超时对于吞吐影响较大,且通常重试的效果不明显,因此当前策略是不会对消息重试,直接通知State Manager 消息处理失败。
  • 处理消息较慢:上游Topic存在Lag,Message Consumer消费速率大于Message Processor处理速率时,消息会堆积在队列中,达到队列最大长度,Message Consumer 会被阻塞在入队操作,停止拉取消息,类似Flink框架中的背压。

监控

为了方便运维,在框架层面暴露了一组监控指标,并支持用户自定义Metrics。其中默认支持的Metrics如下表所示:

监控类别 监控指标
Message Consumer Consumer Lag
Rebalance rate
Deserialize QPS
Consumer heartbeat
Message Enqueue Time
Message Processor Process QPS
Process time
Internal Queue Queue length
线上运维Case举例

实际生产环境运行时,偶尔需要做些运维操作,其中最常见的是消息堆积和消息重放。

对于Conusmer Lag这类问题的处理步骤大致如下:

  • 查看Enqueue Time,Queue Length的监控确定服务内队列是否有堆积。
  • 如果队列有堆积,查看Process Time指标,确定是否是某个Processor处理慢,如果是,根据指标中的Tag 确定事件类型等属性特征,判断业务逻辑或者Key设置是否合理;全部Processor 处理慢,可以通过增加Processor并行度来解决。
  • 如果队列无堆积,排除网络问题后,可以考虑增加Consumer并行度至Topic Partition 上限。

消息重放被触发的原因通常有两种,要么是业务上需要重放部分数据做补全,要么是遇到了事故需要修复数据。为了应对这种需求,我们在框架层面支持了根据时间戳重置Offset的能力。具体操作时的步骤如下:

  • 使用服务测暴露的API,启动一台实例使用新的Consumer GroupId: {newConsumerGroup} 从某个startupTimestamp开始消费。
  • 更改全部配置中的 Consumer GroupId 为 {newConsumerGroup}。
  • 分批重启所有实例。
总结

为了解决DataLeap中Data Catalog系统消费近实时元数据变更的业务场景,我们自研了轻量级消息处理框架。当前该框架已在字节内部生产环境稳定运行超过1年,并支持了火山引擎上的数据地图服务的元数据同步场景,满足了团队需求。

下一步会根据优先级排期支持RocketMQ等其他消息队列,并持续优化配置动态更新,监控报警,运维自动化等方面。

0
0
0
0
关于作者
相关资源
如何构建企业级云原生计算基础设施
云原生大数据是大数据平台新一代架构和运行形态。通过升级云原生架构,可以为大数据在弹性、多租户、敏捷开发、降本增效、安全合规、容灾和资源调度等方向上带来优势。本议题将依托字节跳动最佳实践,围绕云原生大数据解决方案进行展开。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论