TensorFlow实现深度学习算法的教程汇集:代码+笔记

开源镜像容器GPU

picture.image

向AI转型的程序员都关注了这个号 👇👇👇

人工智能大数据与深度学习 公众号: weic2c

这是使用 TensorFlow 实现流行的机器学习算法的教程汇集。本汇集的目标是让读者可以轻松通过案例深入 TensorFlow。

这些案例适合那些想要清晰简明的 TensorFlow 实现案例的初学者。本教程还包含了笔记和带有注解的代码。

教程索引

0 - 先决条件

机器学习入门:

1 - 入门

Hello World:

基本操作:

2 - 基本模型

最近邻:

线性回归:

Logistic 回归:

3 - 神经网络

多层感知器:

卷积神经网络:

循环神经网络(LSTM):

双向循环神经网络(LSTM):

动态循环神经网络(LSTM)

自编码器

4 - 实用技术

保存和恢复模型

图和损失可视化

Tensorboard——高级可视化

5 - 多 GPU

多 GPU 上的基本操作

数据集

一些案例需要 MNIST 数据集进行训练和测试。不要担心,运行这些案例时,该数据集会被自动下载下来(使用input_data.py)。MNIST 是一个手写数字的数据库,查看这个笔记了解关于该数据集的描述:https://github.com/aymericdamien/TensorFlow-Examples/blob/master/notebooks/0\_Prerequisite/mnist\_dataset\_intro.ipynb

更多案例

接下来的示例来自 TFLearn,这是一个为 TensorFlow 提供了简化的接口的库。你可以看看,这里有很多示例和预构建的运算和层。

教程

TFLearn 快速入门。通过一个具体的机器学习任务学习 TFLearn 基础。开发和训练一个深度神经网络分类器。

基础

计算机视觉

自然语言处理

强化学习

Atari Pacman 1-step Q-Learning,使用 1-step Q-learning 教一台机器玩 Atari 游戏:https://github.com/tflearn/tflearn/blob/master/examples/reinforcement\_learning/atari\_1step\_qlearning.py

其他

Recommender-Wide&Deep Network,推荐系统中 wide & deep 网络的教学示例:https://github.com/tflearn/tflearn/blob/master/examples/others/recommender\_wide\_and\_deep.py

Notebooks

可延展的 TensorFlow

搜索公众号添加: weic2c

人工智能大数据与深度学习

picture.image

长按图片,识别二维码,点关注

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
火山引擎大规模机器学习平台架构设计与应用实践
围绕数据加速、模型分布式训练框架建设、大规模异构集群调度、模型开发过程标准化等AI工程化实践,全面分享如何以开发者的极致体验为核心,进行机器学习平台的设计与实现。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论