中阶API建模范例

技术

公众号后台回复关键字: Pytorch ,获取项目github地址。

Pytorch的层次结构从低到高可以分成如下五层。

最底层为硬件层,Pytorch支持CPU、GPU加入计算资源池。

第二层为C++实现的内核。

第三层为Python实现的操作符,提供了封装C++内核的低级API指令,主要包括各种张量操作算子、自动微分、变量管理. 如torch.tensor,torch.cat,torch.autograd.grad,nn.Module. 如果把模型比作一个房子,那么第三层API就是【模型之砖】。

第四层为Python实现的模型组件,对低级API进行了函数封装,主要包括各种模型层,损失函数,优化器,数据管道等等。如torch.nn.Linear,torch.nn.BCE,torch.optim.Adam,torch.utils.data.DataLoader. 如果把模型比作一个房子,那么第四层API就是【模型之墙】。

第五层为Python实现的模型接口。Pytorch没有官方的高阶API。为了便于训练模型,作者仿照keras中的模型接口,使用了不到300行代码,封装了Pytorch的高阶模型接口torchkeras.Model。如果把模型比作一个房子,那么第五层API就是模型本身,即【模型之屋】。

我们将以线性回归和DNN二分类模型为例,直观对比展示在不同层级实现模型的特点。

下面的范例使用Pytorch的中阶API实现线性回归模型和和DNN二分类模型。

Pytorch的中阶API主要包括各种模型层,损失函数,优化器,数据管道等等。


        
          
import os  
import datetime  
  
#打印时间  
def printbar():  
    nowtime = datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S')  
    print("\n"+"=========="*8 + "%s"%nowtime)  
  
#mac系统上pytorch和matplotlib在jupyter中同时跑需要更改环境变量  
os.environ["KMP\_DUPLICATE\_LIB\_OK"]="TRUE"   
  

      

一,线性回归模型

1,准备数据


        
          
import numpy as np   
import pandas as pd  
from matplotlib import pyplot as plt   
import torch  
from torch import nn  
import torch.nn.functional as F  
from torch.utils.data import Dataset,DataLoader,TensorDataset  
  
#样本数量  
n = 400  
  
# 生成测试用数据集  
X = 10*torch.rand([n,2])-5.0  #torch.rand是均匀分布   
w0 = torch.tensor([[2.0],[-3.0]])  
b0 = torch.tensor([[10.0]])  
Y = X@w0 + b0 + torch.normal( 0.0,2.0,size = [n,1])  # @表示矩阵乘法,增加正态扰动  
  

      

        
          
# 数据可视化  
  
%matplotlib inline  
%config InlineBackend.figure_format = 'svg'  
  
plt.figure(figsize = (12,5))  
ax1 = plt.subplot(121)  
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")  
ax1.legend()  
plt.xlabel("x1")  
plt.ylabel("y",rotation = 0)  
  
ax2 = plt.subplot(122)  
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")  
ax2.legend()  
plt.xlabel("x2")  
plt.ylabel("y",rotation = 0)  
plt.show()  
  

      

picture.image


        
          
#构建输入数据管道  
ds = TensorDataset(X,Y)  
dl = DataLoader(ds,batch_size = 10,shuffle=True,num_workers=2)  
  

      

2,定义模型


        
          
model = nn.Linear(2,1) #线性层  
  
model.loss_func = nn.MSELoss()  
model.optimizer = torch.optim.SGD(model.parameters(),lr = 0.01)  
  

      

3,训练模型


        
          
def train\_step(model, features, labels):  
      
    predictions = model(features)  
    loss = model.loss_func(predictions,labels)  
    loss.backward()  
    model.optimizer.step()  
    model.optimizer.zero_grad()  
    return loss.item()  
  
# 测试train\_step效果  
features,labels = next(iter(dl))  
train_step(model,features,labels)  
  
  

      

        
          
269.98016357421875  

      

        
          
def train\_model(model,epochs):  
    for epoch in range(1,epochs+1):  
        for features, labels in dl:  
            loss = train_step(model,features,labels)  
        if epoch%50==0:  
            printbar()  
            w = model.state_dict()["weight"]  
            b = model.state_dict()["bias"]  
            print("epoch =",epoch,"loss = ",loss)  
            print("w =",w)  
            print("b =",b)  
train_model(model,epochs = 200)  
  

      

        
          
================================================================================2020-07-05 22:51:53  
epoch = 50 loss =  3.0177409648895264  
w = tensor([[ 1.9315, -2.9573]])  
b = tensor([9.9625])  
  
================================================================================2020-07-05 22:51:57  
epoch = 100 loss =  2.1144354343414307  
w = tensor([[ 1.9760, -2.9398]])  
b = tensor([9.9428])  
  
================================================================================2020-07-05 22:52:01  
epoch = 150 loss =  3.290461778640747  
w = tensor([[ 2.1075, -2.9509]])  
b = tensor([9.9599])  
  
================================================================================2020-07-05 22:52:06  
epoch = 200 loss =  3.047853469848633  
w = tensor([[ 2.1134, -2.9306]])  
b = tensor([9.9722])  

      

        
          
# 结果可视化  
  
%matplotlib inline  
%config InlineBackend.figure_format = 'svg'  
  
w,b = model.state_dict()["weight"],model.state_dict()["bias"]  
  
plt.figure(figsize = (12,5))  
ax1 = plt.subplot(121)  
ax1.scatter(X[:,0],Y[:,0], c = "b",label = "samples")  
ax1.plot(X[:,0],w[0,0]*X[:,0]+b[0],"-r",linewidth = 5.0,label = "model")  
ax1.legend()  
plt.xlabel("x1")  
plt.ylabel("y",rotation = 0)  
  
  
  
ax2 = plt.subplot(122)  
ax2.scatter(X[:,1],Y[:,0], c = "g",label = "samples")  
ax2.plot(X[:,1],w[0,1]*X[:,1]+b[0],"-r",linewidth = 5.0,label = "model")  
ax2.legend()  
plt.xlabel("x2")  
plt.ylabel("y",rotation = 0)  
  
plt.show()  
  

      

picture.image

二, DNN二分类模型

1,准备数据


        
          
import numpy as np   
import pandas as pd   
from matplotlib import pyplot as plt  
import torch  
from torch import nn  
import torch.nn.functional as F  
from torch.utils.data import Dataset,DataLoader,TensorDataset  
%matplotlib inline  
%config InlineBackend.figure_format = 'svg'  
  
#正负样本数量  
n_positive,n_negative = 2000,2000  
  
#生成正样本, 小圆环分布  
r_p = 5.0 + torch.normal(0.0,1.0,size = [n_positive,1])   
theta_p = 2*np.pi*torch.rand([n_positive,1])  
Xp = torch.cat([r_p*torch.cos(theta_p),r_p*torch.sin(theta_p)],axis = 1)  
Yp = torch.ones_like(r_p)  
  
#生成负样本, 大圆环分布  
r_n = 8.0 + torch.normal(0.0,1.0,size = [n_negative,1])   
theta_n = 2*np.pi*torch.rand([n_negative,1])  
Xn = torch.cat([r_n*torch.cos(theta_n),r_n*torch.sin(theta_n)],axis = 1)  
Yn = torch.zeros_like(r_n)  
  
#汇总样本  
X = torch.cat([Xp,Xn],axis = 0)  
Y = torch.cat([Yp,Yn],axis = 0)  
  
  
#可视化  
plt.figure(figsize = (6,6))  
plt.scatter(Xp[:,0],Xp[:,1],c = "r")  
plt.scatter(Xn[:,0],Xn[:,1],c = "g")  
plt.legend(["positive","negative"]);  
  

      

picture.image


        
          
#构建输入数据管道  
ds = TensorDataset(X,Y)  
dl = DataLoader(ds,batch_size = 10,shuffle=True,num_workers=2)  
  
  

      

2, 定义模型


        
          
class DNNModel(nn.Module):  
    def \_\_init\_\_(self):  
        super(DNNModel, self).__init__()  
        self.fc1 = nn.Linear(2,4)  
        self.fc2 = nn.Linear(4,8)   
        self.fc3 = nn.Linear(8,1)  
  
    # 正向传播  
    def forward(self,x):  
        x = F.relu(self.fc1(x))  
        x = F.relu(self.fc2(x))  
        y = nn.Sigmoid()(self.fc3(x))  
        return y  
      
    # 损失函数  
    def loss\_func(self,y\_pred,y\_true):  
        return nn.BCELoss()(y_pred,y_true)  
      
    # 评估函数(准确率)  
    def metric\_func(self,y\_pred,y\_true):  
        y_pred = torch.where(y_pred>0.5,torch.ones_like(y_pred,dtype = torch.float32),  
                          torch.zeros_like(y_pred,dtype = torch.float32))  
        acc = torch.mean(1-torch.abs(y_true-y_pred))  
        return acc  
      
    # 优化器  
    @property  
    def optimizer(self):  
        return torch.optim.Adam(self.parameters(),lr = 0.001)  
      
model = DNNModel()  
  

      

        
          
# 测试模型结构  
(features,labels) = next(iter(dl))  
predictions = model(features)  
  
loss = model.loss_func(predictions,labels)  
metric = model.metric_func(predictions,labels)  
  
print("init loss:",loss.item())  
print("init metric:",metric.item())  
  

      

        
          
init loss: 0.7065666913986206  
init metric: 0.6000000238418579  

      

3,训练模型


        
          
def train\_step(model, features, labels):  
      
    # 正向传播求损失  
    predictions = model(features)  
    loss = model.loss_func(predictions,labels)  
    metric = model.metric_func(predictions,labels)  
      
    # 反向传播求梯度  
    loss.backward()  
      
    # 更新模型参数  
    model.optimizer.step()  
    model.optimizer.zero_grad()  
      
    return loss.item(),metric.item()  
  
# 测试train\_step效果  
features,labels = next(iter(dl))  
train_step(model,features,labels)  
  

      

        
          
(0.6048880815505981, 0.699999988079071)  

      

        
          
def train\_model(model,epochs):  
    for epoch in range(1,epochs+1):  
        loss_list,metric_list = [],[]  
        for features, labels in dl:  
            lossi,metrici = train_step(model,features,labels)  
            loss_list.append(lossi)  
            metric_list.append(metrici)  
        loss = np.mean(loss_list)  
        metric = np.mean(metric_list)  
  
        if epoch%100==0:  
            printbar()  
            print("epoch =",epoch,"loss = ",loss,"metric = ",metric)  
          
train_model(model,epochs = 300)  

      

        
          
================================================================================2020-07-05 22:56:38  
epoch = 100 loss =  0.23532892110607917 metric =  0.934749992787838  
  
================================================================================2020-07-05 22:58:18  
epoch = 200 loss =  0.24743918558603128 metric =  0.934999993443489  
  
================================================================================2020-07-05 22:59:56  
epoch = 300 loss =  0.2936080049697884 metric =  0.931499992609024  

      

        
          
# 结果可视化  
fig, (ax1,ax2) = plt.subplots(nrows=1,ncols=2,figsize = (12,5))  
ax1.scatter(Xp[:,0],Xp[:,1], c="r")  
ax1.scatter(Xn[:,0],Xn[:,1],c = "g")  
ax1.legend(["positive","negative"]);  
ax1.set_title("y\_true");  
  
Xp_pred = X[torch.squeeze(model.forward(X)>=0.5)]  
Xn_pred = X[torch.squeeze(model.forward(X)<0.5)]  
  
ax2.scatter(Xp_pred[:,0],Xp_pred[:,1],c = "r")  
ax2.scatter(Xn_pred[:,0],Xn_pred[:,1],c = "g")  
ax2.legend(["positive","negative"]);  
ax2.set_title("y\_pred");  
  

      

picture.image

如果本书对你有所帮助,想鼓励一下作者,记得给本项目加一颗星星star⭐️,并分享给你的朋友们喔😊!

如果对本书内容理解上有需要进一步和作者交流的地方,可以在公众号后台回复关键字: 加群 ,加入读者交流群和大家讨论。

公众号后台回复关键字:pytorch,获取项目github地址。

picture.image

picture.image

picture.image

0
0
0
0
关于作者
关于作者

文章

0

获赞

0

收藏

0

相关资源
vivo 容器化平台架构与核心能力建设实践
为了实现规模化降本提效的目标,vivo 确定了基于云原生理念构建容器化生态的目标。在容器化生态发展过程中,平台架构不断演进,并针对业务的痛点和诉求,持续完善容器化能力矩阵。本次演讲将会介绍 vivo 容器化平台及主要子系统的架构设计,并分享重点建设的容器化核心能力。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论