探索LLM推理全阶段的JSON格式输出限制方法

大模型

picture.image

阿里妹导读

文章详细讨论了如何确保大型语言模型(LLMs)输出结构化的JSON格式,这对于提高数据处理的自动化程度和系统的互操作性至关重要。

一、引言

1.1 JSON结构化输出的意义

对于基于大型语言模型(LLMs)的应用而言,确保输出能直接以结构化的JSON格式呈现,对于提升数据处理的自动化程度、增强系统的互操作性具有重要意义。例如,客户需要对LLM的输出进行信息提取时,若输出是一个JSON格式则会大大方便工程链路上的后处理;例如,LLM在调用工具(或其它智能体)时,需要按照工具要求传入正确的参数,若能保证LLM的输出是结构化的JSON,则能保证传参正确,从而正确调用工具。

然而,在实践中,即使我们在提示词中反复告诉模型要输出JSON结构,LLM还是偶尔出错。虽然“偶尔”出错的概率很低,但对于工程链路的设计来说,是致命且麻烦的。

1.2 LLM为何不能严格输出JSON

LLM在推理时,基于已经输出的句子,从词汇表中预测下一个词。预测时,为词汇表中的每个词分配一个概率,通过采样得到预测输出,如图1所示。例如,模型在输出"My name is"后,仅有0.62的概率输出自己的名字"Tang",即使我们在提示词中告诉了模型自己的名字是"Tang",模型也有0.38的概率输出别的名字。

picture.image

图1. LLM推理的预测概率示意

因此,这个依概率采样的推理过程决定了LLM不可能100%按要求输出JSON格式。错误的JSON输出导致了我们在工程链路上无法作后续的解析,因此,能100%严格限制JSON格式输出的方法非常重要。

1.3 友商方案

  • OpenAI JSON Mode

推出于2023年12月份,基于提示词优化,用户仍需要在提示词中给出JSON示例, 不能保证严格100%输出JSON。

  • Kimi JSON Mode

近期推出。类似OpenAI的 JSON Mode,用户仍需要在提示词中给出JSON示例, 不能保证严格100%输出JSON。

  • OpenAI Structured Outputs

推出于2024年8月份,根据用户给出的JSON示例,严格保证100%输出JSON格式。

https://openai.com/index/introducing-structured-outputs-in-the-api/

picture.image

图2. OpenAI输出JSON格式的方法,橙、黄、绿分别代表提示词优化、微调、动态限制解码法的JSON输出准确率

(动态限制解码法准确率为100%)

二、前中后三阶段的优化策略

Motivation: 在一个基于通义千问的AI教评项目场景中,JSON格式输出对客户十分重要。因此,我们在该项目实践中由浅入深,从LLM推理的前、中、后三个阶段探索了限制输出JSON格式的方法。其中,“推理前”和“推理后”这两个阶段的方法用在了项目实践中,大大提高了AI教评任务中JSON格式的输出概率。为了进一步研究如何100%输出JSON格式,我们借他山之石,研究了OpenAI的Structured Outputs方法,在“推理中”这一阶段探索并验证了基于动态限制解码的100%输出JSON格式方法。

在分析相关工作基础上,我们将深入讨论每阶段的方法、优劣及其实现方式,以期帮助读者掌握提升JSON输出概率的办法,并应用在实践中。

2.1 推理“前”:Prompt Engineering

(以下提示词来自大量项目实践验证)

在提示词中加入这句话“The JSON object:json”可提高JSON输出概率。(别问,问就是大量实践总结的经验~)

在提示词中给出"##输出格式规范",并给出JSON示例json ...


        
 

 
  `## 输出格式规范:`
  ````json`
  `[{`
  `"name":"<评价维度>",`
  `"mentions":"< 提及次数 >",`
  `"references":[{`
  `"time":"<发言时间>",`
  `"text":"<原文内容>"}]}]`

The JSON object:json


#### 
【实践】



在利用Qwen-long作AI教评的一个项目中,我们需要从教师的课堂录音文本中提取结构化的教学维度信息。采用本节中的prompt加上2.3中的JSON后处理方法后,输出样本基本是符合预期的结构化JSON。JSON正确概率从50%左右上升到了95%。可见仅靠prompt和后处理,已经能以很高的概率使得大模型按照JSON格式输出。然而,在一些需要严谨输出JSON格式的场景,100%严格输出JSON格式的方法仍值得研究。



#### 
【优势】



实施简便,无需模型架构调整,可以大幅提高输出JSON的概率。



#### 
【不足】



高度依赖于人工设计的prompt,灵活性受限。  **不能100%输出JSON**















  





**2.2 推理“中”:基于动态限制解码实现100%输出JSON**










#### 
【原理】



LLM依据已输出的词,从词汇表中预测下一个词,可以在词汇表中将不符合JSON规范的词概率置零,从而防止输出不符合JSON规范。(原理偏复杂,可跳过本节直接看结论)。假设我们想让LLM的输出为一个城市的如下信息:




city_info_schema=[{ "name":"城市名", "country":"城市所属国家", "latitude":"城市纬度", "population":"城市人口(千万)", "top 3 landmarks":["知名景点1","知名景点2","知名景点3"] }]



如上代码块所示,在内存中定义JSON输出的模式city\_info\_schema。LLM每轮逐个单词输出"response",对于JSON"key"值,如"name",我们直接从内存拼接到输出字符串"response\_str"中;对于JSON"value",则让LLM通过推理产生。当用户提出问题“请填写杭州的城市信息”后,动态限制解码流程如下:


  





![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/677e8d65d9ab4af592e490a9b8a06e0a~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1735090929&x-signature=5XXGvpk1MLEwfDHZ3QnHmsn49EM%3D)3. 动态限制解码法示意图。其中只有绿色词是LLM的推理产生。




  





上图展示了动态限制解码的工作流程,每一轮推理过程我们给定了JSON的“键”,仅让模型推理“值”。可以进一步用正则式(Python re库)限制我们想要的输出格式:




city_regex = ( r"""\{\n""" + r""" "name": "[\w\d\s]{1,16}",\n""" + r""" "country": "[\w\d\s]{1,16}",\n""" + r""" "latitude": [-+]?[0-9]*\.?[0-9]{0,2},\n""" + r""" "population": [-+]?[0-9]{1,9},\n""" + r""" "top 3 landmarks": \["[\w\d\s]{1,16}", "[\w\d\s]{1,16}", "[\w\d\s]{1,16}"\]\n""" + r"""\}""" )



在推理过程中,根据正则式限制输出格式的流程如下:


![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/a6f9121d59e842b286b12d8c6471fc78~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1735090929&x-signature=%2Fpjn0ydDXudcLTgi8T%2FxaxohmoM%3D)




图4. 动态限制解码法的”推理-限制-采样-拼接”流程




  





如第一个键"key"对应的"name",我们用正则式限制其必须输出16个字以内的英文,则"杭"的概率由于不符合正则式要求,预测概率置零,模型一定会按照我们的要求输出。




由于动态限制解码技术需要我们有  **冻结模型解码过程、改变词汇表采样概率、改变模型输入** 的权限,目前  **在线的API接口。**




**不支持编写动态限制解码算法。**
但是可以  **在本地部署模型以实现动态限制解码。**



#### 
【实践】



在PAI平台的免费体验DSW(NVIDIA A10)上本地部署Qwen2-7B-Instruct实现动态限制解码。基于开源的sglang库,可快速部署动态限制解码算法。







pip install --upgrade pip

pip install "sglang[all]"

Install FlashInfer CUDA kernels

wget "https://modelscope.oss-cn-beijing.aliyuncs.com/resource/flashinfer-0.1.2%2Bcu121torch2.3-cp310-cp310-linux_x86_64.whl"

pip install flashinfer-0.1.2+cu121torch2.3-cp310-cp310-linux_x86_64.whl







        modelscope download --model=qwen/Qwen2-7B-Instruct --local\_dir ./Qwen2-7B-Instruct
      
    






        python3 -m sglang.launch\_server --model-path Qwen2-7B-Instruct --port 30000
      
    



图5. sglang框架下的千问模型本地部署成功示意图




显示上图即部署成功。




###导入库 import json import time from sglang import set_default_backend, RuntimeEndpoint import sglang as sgl from sglang.test.test_utils import ( add_common_sglang_args_and_parse, select_sglang_backend, ) from sglang.utils import dump_state_text, read_jsonl ##定义“限制模型输出的正则式” city_regex = ( r"""\{\n""" + r""" "name": "[\w\d\s]{1,16}",\n""" + r""" "country": "[\w\d\s]{1,16}",\n""" + r""" "latitude": [-+]?[0-9]*\.?[0-9]{0,2},\n""" + r""" "population": [-+]?[0-9]{1,9},\n""" + r""" "top 3 landmarks": \["[\w\d\s]{1,16}", "[\w\d\s]{1,16}", "[\w\d\s]{1,16}"\]\n""" + r"""\}""" ) ## 将正则式应用在输出范式中 @sgl.function def chat_example(s,question): s += sgl.system("You are a helpful assistant.") # Same as: s += s.system("You are a helpful assistant.")

with s.user(): s += question

s += sgl.assistant_begin() s += "Answer: " + sgl.gen("json_output", max_tokens=256, regex=city_regex) s += sgl.assistant_end() ## 设置Qwen2的本地通信端口,上图设置为port30000 set_default_backend(RuntimeEndpoint("http://localhost:30000")) ## 捕捉用户输入 state = chat_example.run( question=input("请输入城市名:"), # temperature=0.1, stream=True ) ## 打印必然的JSON输出结果 for out in state.text_iter(): print(out, end="", flush=True)



运行效果:试输入“杭州”和“纽约”两个城市。输出严格按照了正则式的限制。


![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/8cbdd3f807284e8bbf65c10da39cc4a4~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1735090929&x-signature=YTb7FFx7%2B9SLaeJvhxsIWrZTX1I%3D)




![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/8dce274fee3047d3af9c63b4a8b879c9~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1735090929&x-signature=Glan7YvOQMapNBDpY2L5z3AV7fM%3D)




图6. 基于动态限制解码的JSON格式输出结果。



#### 
【优势】


* **100%严格输出JSON格式,甚至是任意正则式可以定义的格式。**
* 在输出的JSON中,节省了输出"key"值的token:因为"key"值是内存中定义好的,不需要由LLM推理而得。因此,相对于prompt的方式让模型输出全JSON的方式,节省了输出的token数量。(这也是为什么OpenAI的JSON 模式每token价格有30%的折扣的原因)


#### 
【不足】


* **必须本地部署LLM。**














  





**2.3 推理“后”:JSON数据后处理**











在模型返回response后,也可以利用后处理的技术,校正JSON结构以  **提高JSON输出的概率。**



* JSON Repair库



Python 的json\_repair库,可以解决一部分模型输出JSON格式不规范的问题。




from json_repair import loads #pip install json_repair import json

if __name__ == '__main__':

bad_string= ''' [ { "foo": "Foo bar baz", "tag": "foo-bar-baz" }, { "中文": "foo bar foobar foo bar baz.", "标签": "foo-bar-foobar" } ] '''

parsed_json = loads(bad_string) json_str = json.dumps(parsed_json,ensure_ascii=False) print(json_str)



经实践验证,json\_repair可以解决输出的JSON中缺少"},],"的问题。


  




* **随机种子控制:**
可改变LLM推理的seed, 在不同的seed下输出以减少出错概率。





三、总结与展望






以上介绍的三种类型的方法,可以同时使用,但需要注意不同的场景限制:



### 
【前、中、后三阶段方法总结】



![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/45242fe840a145d4be4647b31a44adf0~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1735090929&x-signature=zAmHcJPeVDPf1j11IIHOHSi36BQ%3D)



### 
【彩蛋】



qwen-max-0919、qwen-max-latest、qwen-plus、qwen-plus-0919、qwen-plus-latest、qwen-turbo-0919、qwen-turbo-latest以及qwen2.5系列模型已支持结构化输出JSON。(设置response\_format = { "type": "json\_object" } )











0
0
0
0
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论