2024年最全AI大模型面试题合集

大模型向量数据库机器学习

picture.image

向AI转型的程序员都关注公众号 机器学习AI算法工程

  1. 你了解ReAct吗,它有什么优点?

  2. 解释一下langchain Agent的概念

  3. langchain 有哪些替代方案?

  4. langchain token计数有什么问题?如何解决?

  5. LLM预训练阶段有哪几个关键步骤?

  6. RLHF模型为什么会表现比SFT更好?

  7. 参数高效的微调(PEFT)有哪些方法?

  8. LORA微调相比于微调适配器或前缀微调有什么优势?

  9. 你了解过什么是稀疏微调吗?

  10. 训练后量化(PTQ)和量化感知训练(QAT)有什么区别?

  11. LLMs中,量化权重和量化激活的区别是什么?

  12. AWQ量化的步骤是什么?

  13. 介绍一下GPipe推理框架

  14. 矩阵乘法如何做数量并行?

  15. 请简述TPPO算法流程,它跟TRPO的区别是什么?

  16. 什么是检索增强生成(RAG)?

  17. 目前主流的中文向量模型有哪些?

  18. 为什么LLM的知识更新很困难?

  19. RAG和微调的区别是什么?

  20. 大模型一般评测方法及其准是什么?

  21. 什么是Kv cache技术,它具体是如何实现的?

  22. DeepSpeed推理对算子融合做了哪些优化?

  23. 简述一下FlashAttention的原理

  24. MHA、GQA、MQA三种注意力机制的区别是什么?

  25. 请介绍一下微软的ZeRO优化器

  26. Paged Attention的原理是什么,解决了LLM中的什么问题?

  27. 什么是投机采样技术,请举例说明?

  28. 简述GPT和BERT的区别

  29. 讲一下GPT系列模型的是如何演进的?

  30. 为什么现在的大模型大多是decoder-only的架构?

  31. 讲一下生成式语言模型的工作机理

  32. 哪些因素会导致LLM中的偏见?

  33. LLM中的因果语言建模与掩码语言建模有什么区别?

  34. 如何减轻LLM中的“幻觉”现象?

  35. 解释ChatGPT的“零样本”和“少样本”学习的概念

  36. 你了解大型语言模型中的哪些分词技术?

  37. 如何评估大语言模型(LLMs)的性能?

  38. 如何缓解LLMs复读机问题?

  39. 请简述下Transformer基本原理

  40. 为什么Transformer的架构需要多头注意力机制?

  41. 为什么transformers需要位置编码?

  42. transformer中,同一个词可以有不同的注意力权重吗?

  43. Wordpiece与BPE之间的区别是什么?

  44. 有哪些常见的优化LLMs输出的技术?

  45. GPT-3拥有的1750亿参数,是怎么算出来的?

  46. 温度系数和top-p、top-k参数有什么区别?

  47. 为什么transformer块使用LayerNorm而不是BatchNorm?

  48. 介绍一下post layer norm和pre layer norm的区别

  49. 什么是思维链(CoT)提示?

  50. 你觉得什么样的任务或领域适合用思维链提示?

  51. 目前主流的开源模型体系有哪些?

  52. prefix LM和causal LM区别是什么?

  53. 涌现能力是啥原因?

  54. 大模型LLM的架构介绍?

  55. 什么是LLMs复读机问题?

  56. 为什么会出现LLMs复读机问题?

  57. 如何缓解LLMs复读机问题?

  58. llama输入句子长度理论上可以无限长吗?

  59. 什么情况下用Bert模型,什么情况下用LLama、ChatGLM类大模型,咋选?

  60. 各个专长领域是否需要各自的大模型来服务?

  61. 如何让大模型处理更长的文本?

  62. 为什么大模型推理时显存涨的那么多还一直占着?

  63. 大模型在gpu和cpu上推理速度如何?

  64. 推理速度上,int8和fp16比起来怎么样?

  65. 大模型有推理能力吗?

  66. 大模型生成时的参数怎么设置?

  67. 有哪些省内存的大语言模型训练/微调/推理方法?

  68. 如何让大模型输出台规化

  69. 应用模式变更

  70. 大模型怎么评测?

  71. 大模型的honest原则是如何实现的?

  72. 模型如何判断回答的知识是训练过的已知的知识,怎么训练这种能力?

  73. 奖励模型需要和基础模型一致吗?

  74. RLHF在实践过程中存在哪些不足?

  75. 如何解决人工产生的偏好数据集成本较高,很难量产问题?

  76. 如何解决三个阶段的训练(SFT->RM->PPO)过程较长,更新迭代较慢问题?

  77. 如何解决PPO的训练过程中同时存在4个模型(2训练,2推理),对计算资源的要求较高问题?

  78. 如何给LLM注入领域知识?

  79. 如果想要快速检验各种模型,该怎么办?

  80. 预训练数据Token重复是否影响模型性能?

  81. 什么是位置编码?

  82. 什么是绝对位置编码?

  83. 什么是相对位置编码?

  84. 旋转位置编码RoPE思路是什么?

  85. 旋转位置编码RoPE有什么优点?

  86. 什么是长度外推问题?

  87. 长度外推问题的解决方法有哪些?

  88. ALiBi(Attention with Linear Biases)思路是什么?

  89. ALiBi(Attention with Linear Biases)的偏置矩阵是什么?有什么作用?

  90. ALiBi(Attention with Linear Biases)有什么优点?

  91. Layer Norm的计算公式写一下?

  92. RMS Norm的计算公式写一下?

  93. RMS Norm相比于Layer Norm有什么特点?

  94. Deep Norm思路?

  95. 写一下Deep Norm代码实现?

  96. Deep Norm有什么优点?

  97. LN在LLMs中的不同位置有什么区别么?如果有,能介绍一下区别么?

  98. LLMs各模型分别用了哪种Layer normalization?

  99. 介绍一下FFN块计算公式?

  100. 介绍一下GeLU计算公式?

  101. 介绍一下Swish计算公式?

  102. 介绍一下使用GLU线性门控单元的FFN块计算公式?

  103. 介绍一下使用GeLU的GLU块计算公式?

  104. 介绍一下使用Swish的GLU块计算公式?

机器学习算法AI大数据技术

搜索公众号添加: datanlp

picture.image

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

搜索公众号添加: datayx

picture.image

0
0
0
0
相关资源
字节跳动大数据容器化构建与落地实践
随着字节跳动旗下业务的快速发展,数据急剧膨胀,原有的大数据架构在面临日趋复杂的业务需求时逐渐显现疲态。而伴随着大数据架构向云原生演进的行业趋势,字节跳动也对大数据体系进行了云原生改造。本次分享将详细介绍字节跳动大数据容器化的演进与实践。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论