AAAI2025推荐系统相关论文整理

大模型推荐算法数据中台

2025年第39届人工智能顶级会议AAAI论文列表已于近日放出,此次会议共收到12957篇有效投稿,录取篇数为3032篇,录取率为23.4%。大会将在2025年2月25日到3月4日在美国宾夕法尼亚州费城举办。

picture.image

我们特意从3032篇论文中筛选出与推荐系统相关的85篇文章供大家阅读,提前领略学术前沿趋势与牛人的最新想法,其中Oral有22篇,Poster有63篇。通过整理发现,此次会议接收的推荐系统相关论文主要涉及多模态推荐、大模型推荐、图推荐、扩散模型推荐、序列推荐、跨域推荐等。

下文整理了推荐系统相关的论文标题,供大家查看相关的研究主题,其中有一些论文已经发布在预印版网站上,大家可提前阅读。

Oral(22篇)

Modality-Independent Graph Neural Networks with Global Transformers for Multimodal Recommendation

Jun Hu,Bryan Hooi,Bingsheng He,Yinwei Wei

CoRA: Collaborative Information Perception by Large Language Model's Weights for Recommendation

Yuting Liu,Jinghao Zhang,Yizhou Dang,Yuliang Liang,Qiang Liu,Guibing Guo,Jianzhe Zhao,Xingwei Wang

Curriculum Conditioned Diffusion for Multimodal Recommendation

Yimeng Yang,Haokai Ma,Lei Meng,Shuo Xu,Ruobing Xie,Xiangxu Meng

LEARN: Knowledge Adaptation from Large Language Model to Recommendation for Practical Industrial Application

Jian Jia,Yipei Wang,Yan Li,Honggang Chen,xuehan bai,Zhaocheng Liu,Jian Liang,Quan Chen,Han Li,Peng Jiang,Kun Gai

Disentangled Modeling of Preferences and Social Influence for Group Recommendation

Guangze Ye,Wen Wu,Guoqing Wang,Xi Chen,Hong Zheng,Liang He

Mind Individual Information! Principal Graph Learning for Multimedia Recommendation

Penghang Yu,Zhiyi Tan,Guanming Lu,Bingkun BAO

Multifaceted User Modeling in Recommendation: A Federated Foundation Models Approach

Chunxu Zhang,Guodong Long,Hongkuan Guo,Liu Zhaojie,Guorui Zhou,Zijian Zhang,Yang Liu,Bo Yang

LLMEmb: Large Language Model Can Be a Good Embedding Generator for Sequential Recommendation

Qidong Liu,Xian Wu,Wanyu Wang,Yejing Wang,Yuanshao Zhu,Xiangyu Zhao,Feng Tian,Yefeng Zheng

Behavior Importance-Aware Graph Neural Architecture Search for Cross-Domain Recommendation

Chendi Ge,Xin Wang,Ziwei Zhang,Yijian Qin,Hong Chen,Haiyang Wu,Yang Zhang,Yuekui Yang,Wenwu Zhu

Social Recommendation via Graph-Level Counterfactual Augmentation

Yinxuan Huang,KE LIANG,Yanyi Huang,Xiang Zeng,Kai Chen,Bin Zhou

Robust Graph Based Social Recommendation through Contrastive Multi-view Learning

Tao Zhang,Fei Xiong,Shirui Pan,Guixun Luo,Liang Wang

Domain-Level Disentanglement Framework Based on Information Enhancement for Cross-Domain Cold-Start Recommendation

Nian Rong,Fei Xiong,Shirui Pan,Guixun Luo,Jia Wu,Liang Wang

Counterfactual Task-Augmented Meta-Learning for Cold-Start Sequence Recommendation

Zhiqiang Wang,Jiayi Pan,Xingwang Zhao,Jianqing Liang,Chenjiao Feng,Kaixuan Yao

POI Recommendation via Multi-Objective Adversarial Imitation Learning

Zhenglin Wan,Anjun Gao,Xingrui Yu,Pingfu Chao,Jun Song,Maohao Ran

Dynamic Multi-Modal Recommendation Under Legal, Licensing, and Modality Constraints with Reverse BPR

Yash Sinha,Murari Mandal,Mohan Kankanhalli

Semantic Convergence: Harmonizing Recommender Systems via Two-Stage Alignment and Behavioral Semantic Tokenization

guanghan li,Xun Zhang,Zhangyufei,Yifan Yin,Guojun Yin,Wei Lin

CoDeR: Counterfactual Demand Reasoning for Sequential Recommendation

TangShuai,Sitao Lin,Jianghong Ma,Xiaofeng Zhang

Lightweight yet Fine-grained: A Graph Capsule Convolutional Network with Subspace Alignment for Shared-account Sequential Recommendation

Jinyu Zhang,Zhongying Zhao,Chao Li,Yanwei Yu

Enhancing Diffusion Model with Auxiliary Information Mining Exploration and Efficient Sampling Mechanism for Sequential Recommendation

Te Song,Lianyong Qi,Weiming Liu,Fan Wang,Xiaolong Xu,Xuyun Zhang,Amin Beheshti,Xiaokang Zhou,Wanchun Dou

Semantic Enhanced Heterogeneous Hypergraph Network for Collaborative Filtering

Mingtao Xu,Wei Wei,Peixuan Yang,Hulong Wu

Spatial-Temporal Knowledge Distillation For Takeaway Recommendation

Shuyuan Zhao,Wei Chen,Boyan Shi,Liyong Zhou,Shuohao Lin,Huaiyu Wan

Ehancing Long- and Short-Term Representations for Next POI Recommendations via Frequency and Hierarchical Contrastive Learning

Jiajie Chen,Peng-Fei Zhang,Yu Sang,Jiaan Wang,Jianfeng Qu,Zhixu Li

Poster(63篇)

Multi-type MOOCs Recommendation: Leveraging Deep Multi-Relational Representation and Hierarchical Reasoning

Ye Zhang,Yanqi Gao,Dongjie Wang,Yupeng Zhou,Jinlong He,Zhaoyang Sun,Minghao Yin

Integrating Personalized Spatio-Temporal Clustering for Next POI Recommendation

Chao Song,Zheng Ren,Li Lu

Seeing Beyond Noise: Joint Graph Structure Evaluation and Denoising for Multimodal Recommendation

Yuxin Qi,Quan Zhang,Xi Lin,Xiu Su,Jiani Zhu,Jingyu Wang,Jianhua Li

LS-TGNN: Long and Short-Term Temporal Graph Neural Network for Session-Based Recommendation

Zhonghong Ou,Xiao zhang,Yifan Zhu,Shuai Lv,Jiahao Liu,Tu Ao

From Pairwise to Ranking: Climbing the Ladder to Ideal Collaborative Filtering with Pseudo-Ranking

Yuhan Zhao,Rui Chen,Li Chen,Shuang Zhang,Qilong Han,Hongtao Song

Intent Oriented Contrastive Learning for Sequential Recommendation

Wuhong Wang,Jianhui Ma,Yuren Zhang,Kai Zhang,Junzhe Jiang,Yihui Yang,Yacong Zhou,Zheng Zhang

Augmenting Sequential Recommendation with Balanced Relevance and Diversity

Yizhou Dang,Jiahui Zhang,Yuting Liu,Enneng Yang,Yuliang Liang,Guibing Guo,Jianzhe Zhao,Xingwei Wang

Feature-Structure Adaptive Completion Graph Neural Network for Cold-start Recommendation

Lei Songyuan,changxinglong,Zhizhi Yu,Dongxiao He,Cuiying Huo,Jianrong Wang,Di Jin

SIGMA: Selective Gated Mamba for Sequential Recommendation

Ziwei Liu,Qidong Liu,Yejing Wang,Wanyu Wang,Pengyue Jia,Maolin Wang,Zitao Liu,Yi Chang,Xiangyu Zhao

Ready for You When You are Back: Content-driven Session-based Recommendation for Continuity of Experience

Brijraj Singh,Sonal,Niranjan Pedanekar

ScoreNet: Consistency-driven Framework with Multiside Information Fusion for Session-based Recommendation

piao tong,Qiao Liu,Zhipeng Zhang,Yuke Wang,Tian Lan

Both Supply and Precision: Sample Debias and Ranking Consistency Joint Learning for Large Scale Pre-ranking System

Feng Gao,Xin Zhou,Yinning Shao,Yue Wu,Jiahua Gao,Yujian Ren,Fengyang Qi,Ruochen Deng,Jie Liu

Sub-Interest-Aware Representation Uniformity for Recommender System

Ruijia Ma,Yahong Lian,Chunyao Song

Exploiting Fine-grained Skip Behaviors for Microvideo Recommendation

Sanghyuck Lee,Sangkeun Park,Jaesung Lee

Disentangled Contrastive Bundle Recommendation with Conditional Diffusion

Jiuqiang Li

DR-VAE: Debiased and Representation-enhanced Variational Autoencoder for Collaborative Recommendation

Fan Wang,Chaochao Chen,Weiming Liu,Minye Lei,Jintao Chen,Yuwen Liu,Xiaolin Zheng,Jianwei Yin

Sim4Rec: Data-Free Model Extraction Attack on Sequential Recommendation

Yihao Wang,Jiajie Su,Chaochao Chen,Meng Han,Chi Zhang,Jun Wang

Multiple Purchase Chains with Negative Transfer Elimination for Multi-Behavior Recommendation

Shuwei Gong,Yuting Liu,Yizhou Dang,Guibing Guo,Jianzhe Zhao,Xingwei Wang

CoT4Rec: Revealing User Preferences through Chain of Thought for Recommender Systems

Weiqi Yue,Yuyu Yin,Xin Zhang,Binbin Shi,Tingting Liang,Wan Jian

Active Large Language Model-based Knowledge Distillation for Session-based Recommendation

Yingpeng Du,Zhu Sun,Ziyan Wang,Haoyan Chua,Jie Zhang,Yew-Soon Ong

MENTOR: Multi-level Self-supervised Learning for Multimodal Recommendation

Jinfeng Xu,Zheyu Chen,Shuo Yang,Jinze Li,Hewei Wang,Edith C. H. Ngai

CUGF: A Reliable and Fair Recommendation Framework

Nitin Bisht,Xiuwen Gong,Guandong Xu

DisCo: Graph-Based Disentangled Contrastive Learning for Cold-Start Cross-Domain Recommendation

Hourun Li,Yifan Wang,Zhiping Xiao,Jia Yang,Changling Zhou,Ming Zhang,Wei Ju

Enhancing Sequential Recommendation with Global Diffusion

Mingxuan Luo,Yang Li,Chen Lin

BeFA: A General Behavior-driven Feature Adapter for Multimedia Recommendation

Qile Fan,Penghang Yu,Zhiyi Tan,Bingkun BAO,Guanming Lu

Harnessing Multimodal Large Language Models for Multimodal Sequential Recommendation

Yuyang Ye,Zhi Zheng,Yishan Shen,Tianshu Wang,Hengruo Zhang,Peijun Zhu,Runlong Yu,Kai Zhang,Hui Xiong

Rethinking Byzantine Robustness in Federated Recommendation from Sparse Aggregation Perspective

Zhongjian Zhang,Mengmei Zhang,Xiao Wang,Lingjuan Lyu,Bo Yan,Junping Du,Chuan Shi

Addressing Cold-start Problem in Click-Through Rate Prediction via Supervised Diffusion Modeling

Wenqiao Zhu,Lulu Wang,Jun Wu

Iterative Sparse Attention for Longsequence Recommendation

Guanyu Lin,Jinwei Luo,Yinfeng Li,Chen Gao,Qun Luo,Depeng Jin

DOGE: LLMs-Enhanced HyperKnowledge Graph Recommender for Multimodal Recommendation

Fanshen Meng,Zhenhua Meng,Ru Jin,Rongheng Lin,Budan Wu

Coherency Improved Explainable Recommendation via Large Language Model

Shijie Liu,Ruixin Ding,Weiha Lu,Jun Wang,Mo Yu,Xiaoming Shi,Wei Zhang

LLM4RSR: Large Language Models as Data Correctors for Robust Sequential Recommendation

Yatong Sun,Xiaochun Yang,Zhu Sun,Yan Wang,Bin Wang,Xinghua Qu

LLM-Powered Efficient User Simulator for Recommender System

Zijian Zhang,Shuchang Liu,Ziru Liu,Rui Zhong,Qingpeng Cai,Xiangyu Zhao,Chunxu Zhang,Qidong Liu,Peng Jiang

Bridging the User-side Knowledge Gap in Knowledge-aware Recommendations with Large Language Models

Zheng Hu,Zhe Li,Ziyun Jiao,Satoshi Nakagawa,Jiawen Deng,Shimin Cai,Tao Zhou,Fuji Ren

Learning Multiple User Distributions for Recommendation via Guided Conditional Diffusion

Cheng Wu,Liang Su,Chaokun Wang,Shaoyun Shi,Ziqian Zhang,Ziyang Liu,wang Peng,wenjin wu,Peng Jiang

STAIR: Manipulating Collaborative and Multimodal Information for ECommerce Recommendation

Cong Xu,Yunhang He,Jun Wang,Wei Zhang

Towards -Challenges Underlying LLM-Based Augmentation for Personalized News Recommendation

Shicheng Wang,Hengzhu Tang,Li Gao,Shu Guo,Suqi Cheng,Junfeng Wang,Dawei Yin,Tingwen Liu,Lihong Wang

Neural Combinatorial Clustered Bandits for Recommendation Systems

Baran Atalar,Carlee Joe-Wong

ESPRESSO: An Effective Approach to Passage Retrieval for High-Quality Conversational Recommender Systems

Taeho Kim,Hyeongjun Jang,Juwon Yu,Taeuk Kim,Hyunyoung Lee,Jihui Im,Sang-Wook Kim

Contrastive Representation for Interactive Recommendation

Jingyu Li,Zhiyong Feng,Dongxiao He,Hongqi Chen,Qinghang Gao,Guoli Wu

Bagging-Expert Network for Multi-Task Learning: A Depolarization Solution in Multi-Gate Mixture-of-Experts

Gong-Duo Zhang,Ruiqing Chen,Qian Zhao,Zhengwei WU,Fengyu Han,Huan-Yi Su,Ziqi Liu,Lihong Gu,Lin Zhou

One for Dozens: Adaptive REcommendation for All Domains with Counterfactual Augmentation

Huishi Luo,YiWen Chen,Yiqing Wu,Fuzhen Zhuang,deqing wang

Dynamic Multi-Interest Graph Neural Network for Session-Based Recommendation

Mingyang Lv,Xiangfeng Liu,yuanbo xu

Enhancing Healthcare Recommendations: A Privacy-Protective and Interpretable Cross-Domain Framework

Xun Liang,Zhiying Li,Hongxun Jiang

HI-DR: Exploiting Health Status-Aware Attention and an EHR Graph+ for Effective Medication Recommendation

Taeri Kim,Jiho Heo,Hyunjoon Kim,SangWook Kim

Bites of Tomorrow: Personalized Recommendations for a Healthier and Greener Plate

Jing Jiazheng,Yinan Zhang,Chunyan Miao

Direct Routing Gradient (DRGrad): A Personalized Information Surgery for Multi-Task Learning (MTL) Recommendations

Yuguang Liu,Yiyun Miao,Luyao Xia

The Adaptive Q-Network for Recommendation Tasks with Dynamic Item Space

Jianxiang Zhu,Dandan Lai,Zhongcui Ma,Yaxin Peng

Auto Encoding Neural Process for Multiinterest Recommendation

Yiheng Jiang,yuanbo xu,Yongjian Yang,Funing Yang,Pengyang Wang,Chaozhuo Li

Entire-Space Variational Information Exploitation for Post-Click Conversion Rate Prediction

Ke Fei,Xinyue Zhang,Jingjing Li

Future Sight and Tough Fights: Revolutionizing Sequential Recommendation with FENRec

Yu-Hsuan Huang,Ling Lo,Hongxia Xie,Hong-Han Shuai,Wen-Huang Cheng

Towards Unbiased Information Extraction and Adaptation in CrossDomain Recommendation

Yibo Wang,Yingchun Jian,Wenhao Yang,Shiyin Lu,LEI SHEN,Bing Wang,Xiaoyi Zeng,Lijun Zhang

DivGCL: A Graph Contrastive Learning Model for Diverse Recommendation

Wenwen Gong,Yangliao Geng,Dan Zhang,Yifan Zhu,Xiaolong Xu,Haolong Xiang,Amin Beheshti,Xuyun Zhang,Lianyong Qi

Trust-GRS: A Trustworthy Training Framework for Graph Neural Network Based Recommender Systems against Shilling Attacks

Lingyu Mu,Zhengxiao Liu,Zhitong Zhu,Zheng Lin

Beyond Graph Convolution: Multimodal Recommendation with Topology-aware MLPs

Junjie Huang,Jiarui Qin,Yong Yu,Weinan Zhang

Personalized Federated Collaborative Filtering: A Variational AutoEncoder Approach

Zhiwei Li,Guodong Long,Tianyi Zhou,Jing Jiang,Chengqi Zhang

GeoMamba: Towards Multi-granular POI Recommendation with Geographical State Space Model

Yifang Qin,Jiaxuan Xie,Zhiping Xiao,Ming Zhang

Re2LLM: Reflective Reinforcement Large Language Model for Session-based Recommendation

Ziyan Wang,Yingpeng Du,Zhu Sun,Haoyan Chua,Kaidong Feng,Wenya Wang,Jie Zhang

Advancing Loss Functions in Recommender Systems: A Comparative Study with a Rényi Divergence-Based Solution

Shengjia Zhang,Jiawei Chen,Changdong Li,Sheng Zhou,Qihao Shi,Yan Feng,Chun Chen,Can Wang

Counterfactual Task-Augmented MetaLearning for Cold-Start Sequence Recommendation

Zhiqiang Wang,Jiayi Pan,Xingwang Zhao,Jianqing Liang,Chenjiao Feng,Kaixuan Yao

Fuzzy Collaborative Reasoning

Huanhuan Yuan,Pengpeng Zhao,Jiaqing Fan,Junhua Fang,Guanfeng Liu,Victor S. Sheng

Federated Recommendation with Explicitly Encoding Item Bias

Zhihao Wang,He Bai,Wenke Huang,Duantengchuan Li,Jian Wang,Bing Li

POI Recommendation via Multi-Objective Adversarial Imitation Learning

Zhenglin Wan,Anjun Gao,Xingrui Yu,Pingfu Chao,Jun Song,Maohao Ran

更多接收论文详细信息可查阅以下链接:

https://aaai.org/wp-content/uploads/2025/01/AAAI-25-Oral-Talks-Schedule.pdf

https://aaai.org/wp-content/uploads/2025/01/AAAI-25-Poster-Schedule.pdf


欢迎 **干货投稿 \

论文宣传

\

合作交流**

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
大规模高性能计算集群优化实践
随着机器学习的发展,数据量和训练模型都有越来越大的趋势,这对基础设施有了更高的要求,包括硬件、网络架构等。本次分享主要介绍火山引擎支撑大规模高性能计算集群的架构和优化实践。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论