从零实现Gemma 3 270M ,普通笔记本也能跑

大模型向量数据库机器学习

Github64k的高星《从零构建大语言模型》的作者Sebastian Raschka, 把 Google 的 Gemma 3 270M 用纯 PyTorch 重新实现了(之前从零实现了qwen3),只需 1.49GB 内存,笔记本或者Google Colab 都能跑。

picture.image

Google 推出超小杯 AI:Gemma 3 270M!可进手机和浏览器这个 270M 参数的小模型只用了 4 个 attention head,设计很极简。在大家都在拼大模型的时候,Google 反而走了轻量化路线。(Google 推出超小杯 AI:Gemma 3 270M!可进手机和浏览器

picture.image

Sebastian 的代码风格一向干净,没有过度封装。想真正理解 Transformer 架构的,这比啃论文实用多了。已经有大学教授在用他的材料教学,从头实现确实比调 API 学得深。这种小模型更适合做学习工具或者特定任务的微调底座。有人想用它做 RAG 的 reranker,考虑到 60% 的 embedding 结构,倒是个有趣方向。

最重要的是门槛够低,普通笔记本就能跑,连 GPU 都不用,想入门 LLM 架构的可以试试。

picture.image

想要系统学习的建议购买他的这本书:

picture.image

GitHub:

https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/12\_gemma3/

https://github.com/rasbt/LLMs-from-scratch/blob/main/ch05/11\_qwen3/

关注公众号回复“进群”入群讨论。

0
0
0
0
关于作者
关于作者

文章

0

获赞

0

收藏

0

相关资源
大规模高性能计算集群优化实践
随着机器学习的发展,数据量和训练模型都有越来越大的趋势,这对基础设施有了更高的要求,包括硬件、网络架构等。本次分享主要介绍火山引擎支撑大规模高性能计算集群的架构和优化实践。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论