SimpleDateFormat是java中提供的日期时间转换类,你觉得它有线程安全吗,工作几年的开发工程师估计也觉得没啥问题,之所以没问题主要是系统达不到它出现问题的并发量。接下来我们使用java并发包中的CountDownLatch类和Semaphore类来重新线程安全。 Count D own Latch可以是一个线程等待其他线程各自执行完毕后再继续执行。 S em
apho re是一个计数信号量,必须由获取它的线程释放,经常用来限制访问某些资源的线程数量,如限流等。
重新SimpleDateFormat线程安全案例
package com.lmf.demo.entity;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class TestSimpleDateFormat {
//执行总次数
private static final int EXECUTE_COUNT=100;
//运行的线程数
private static final int THREAD_COUNT=10;
private static SimpleDateFormat simpleDateFormat=new SimpleDateFormat("YYYY-MM-dd");
public static void main(String[] args) throws InterruptedException {
final Semaphore semaphore=new Semaphore(THREAD_COUNT);
final CountDownLatch countDownLatch=new CountDownLatch(EXECUTE_COUNT);
ExecutorService executorService=Executors.newCachedThreadPool();
for(int i=0;i<EXECUTE_COUNT;i++){
executorService.submit(()->{
try {
semaphore.acquire();
try{
simpleDateFormat.parse("2021-12-13");
} catch (NumberFormatException e){
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
} catch (ParseException e) {
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
}
semaphore.release();
} catch (InterruptedException e) {
System.out.println("信号量发生错误");
e.printStackTrace();
System.exit(1);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
System.out.println("所有线程格式化日期成功");
}
}
我们定义了俩个常量EXECUTE_COUNT(执行数量)和THREAD_COUNT(线程个数),并且结合线程池的Semaphore类和CountDownLatch类来模拟高并发的业务场景。如果程序正确运行会打印"所有线程格式化日期成功",但是程序抛出了异常,说明SimpleDateFormat不是线程安全的。
带着疑问我们跟进一下SimpleDateFormat源码,看为什么它线程不安全
它继承DateFormat类,我们看下DateFormat类源码,它维护一个全局的Calendar变量,它可以用来格式化或解析日期时间。接下来我们看parse方法
public Date parse(String text, ParsePosition pos)
{
//省略部分代码,bu'ying
Date parsedDate;
try {
parsedDate = calb.establish(calendar).getTime();
// If the year value is ambiguous,
// then the two-digit year == the default start year
if (ambiguousYear[0]) {
if (parsedDate.before(defaultCenturyStart)) {
parsedDate = calb.addYear(100).establish(calendar).getTime();
}
}
}
// An IllegalArgumentException will be thrown by Calendar.getTime()
// if any fields are out of range, e.g., MONTH == 17.
catch (IllegalArgumentException e) {
pos.errorIndex = start;
pos.index = oldStart;
return null;
}
return parsedDate;
}
解析最后的返回值是通过调用calb.establish(calendar).getTime(),这个方法的参数正是全局变量 Calendar对象。接下来看看 establish源码
Calendar establish(Calendar cal) {
boolean weekDate = isSet(WEEK_YEAR)
&& field[WEEK_YEAR] > field[YEAR];
if (weekDate && !cal.isWeekDateSupported()) {
// Use YEAR instead
if (!isSet(YEAR)) {
set(YEAR, field[MAX_FIELD + WEEK_YEAR]);
}
weekDate = false;
}
cal.clear();
// Set the fields from the min stamp to the max stamp so that
// the field resolution works in the Calendar.
for (int stamp = MINIMUM_USER_STAMP; stamp < nextStamp; stamp++) {
for (int index = 0; index <= maxFieldIndex; index++) {
if (field[index] == stamp) {
cal.set(index, field[MAX_FIELD + index]);
break;
}
}
}
if (weekDate) {
int weekOfYear = isSet(WEEK_OF_YEAR) ? field[MAX_FIELD + WEEK_OF_YEAR] : 1;
int dayOfWeek = isSet(DAY_OF_WEEK) ?
field[MAX_FIELD + DAY_OF_WEEK] : cal.getFirstDayOfWeek();
if (!isValidDayOfWeek(dayOfWeek) && cal.isLenient()) {
if (dayOfWeek >= 8) {
dayOfWeek--;
weekOfYear += dayOfWeek / 7;
dayOfWeek = (dayOfWeek % 7) + 1;
} else {
while (dayOfWeek <= 0) {
dayOfWeek += 7;
weekOfYear--;
}
}
dayOfWeek = toCalendarDayOfWeek(dayOfWeek);
}
cal.setWeekDate(field[MAX_FIELD + WEEK_YEAR], weekOfYear, dayOfWeek);
}
return cal;
}
先后调用 cal.clear()和cal.set()方法,先清除cal对象中设置的值,再重新设置新的值。由于Calendar内部没有线程安全机制,并且俩个操作也不是原子性的,所以当多个线程同时操作一个SimpleDateFormat时就会引起cal值的混乱。所以SimpleDateFormat类不是线程安全的根本原因是:DateFormat类中的Calendar对象被多线程共享,而Calendar对象本身不支持线程安全。
解决方案
1.局部变量法,但是会创建大量的SimpleDateFormat,影响程序的性能
package com.lmf.demo.entity;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class TestSimpleDateFormat {
//执行总次数
private static final int EXECUTE_COUNT=100;
//运行的线程数量
private static final int THREAD_COUNT=10;
/*private static SimpleDateFormat simpleDateFormat=new SimpleDateFormat("YYYY-MM-dd");*/
public static void main(String[] args) throws InterruptedException {
final Semaphore semaphore=new Semaphore(THREAD_COUNT);
final CountDownLatch countDownLatch=new CountDownLatch(EXECUTE_COUNT);
ExecutorService executorService=Executors.newCachedThreadPool();
for(int i=0;i<EXECUTE_COUNT;i++){
executorService.submit(()->{
try {
semaphore.acquire();
try{
SimpleDateFormat simpleDateFormat=new SimpleDateFormat("YYYY-MM-dd");
simpleDateFormat.parse("2021-12-13");
} catch (NumberFormatException e){
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
} catch (ParseException e) {
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
}
semaphore.release();
} catch (InterruptedException e) {
System.out.println("信号量发生错误");
e.printStackTrace();
System.exit(1);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
System.out.println("所有线程格式化日期成功");
}
}
2.synchronized锁方式,能解决线程安全问题,但是同一个时刻只能有一个线程执行方法,会影响程序的性能。
package com.lmf.demo.entity;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class TestSimpleDateFormat {
//执行总次数
private static final int EXECUTE_COUNT=300;
//运行的线程数量
private static final int THREAD_COUNT=30;
private static SimpleDateFormat simpleDateFormat=new SimpleDateFormat("YYYY-MM-dd");
public static void main(String[] args) throws InterruptedException {
final Semaphore semaphore=new Semaphore(THREAD_COUNT);
final CountDownLatch countDownLatch=new CountDownLatch(EXECUTE_COUNT);
ExecutorService executorService=Executors.newCachedThreadPool();
for(int i=0;i<EXECUTE_COUNT;i++){
executorService.submit(()->{
try {
semaphore.acquire();
try{
synchronized (simpleDateFormat){
simpleDateFormat.parse("2021-12-13");
}
} catch (NumberFormatException e){
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
} catch (ParseException e) {
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
}
semaphore.release();
} catch (InterruptedException e) {
System.out.println("信号量发生错误");
e.printStackTrace();
System.exit(1);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
System.out.println("所有线程格式化日期成功");
}
}
3.Lock锁方式和synchronized锁实现原理一样,都是在高并发下通过jvm的锁机制来保证程序的线程安全。
package com.lmf.demo.entity;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class TestSimpleDateFormat {
//执行总次数
private static final int EXECUTE_COUNT=300;
//运行的线程数量
private static final int THREAD_COUNT=30;
private static SimpleDateFormat simpleDateFormat=new SimpleDateFormat("YYYY-MM-dd");
//lock
private static Lock lock=new ReentrantLock();
public static void main(String[] args) throws InterruptedException {
final Semaphore semaphore=new Semaphore(THREAD_COUNT);
final CountDownLatch countDownLatch=new CountDownLatch(EXECUTE_COUNT);
ExecutorService executorService=Executors.newCachedThreadPool();
for(int i=0;i<EXECUTE_COUNT;i++){
executorService.submit(()->{
try {
semaphore.acquire();
try{
lock.lock();
simpleDateFormat.parse("2021-12-13");
} catch (NumberFormatException e){
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
} catch (ParseException e) {
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
}finally {
lock.unlock();
}
semaphore.release();
} catch (InterruptedException e) {
System.out.println("信号量发生错误");
e.printStackTrace();
System.exit(1);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
System.out.println("所有线程格式化日期成功");
}
}
4.ThreadLocal存储每个线程拥有的SimpleDateFormat对象的副本,能够有效的避免多线程造成的线程安全问题。运行效率比较高,高并发业务场景可以使用此方法。
package com.lmf.demo.entity;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReentrantLock;
public class TestSimpleDateFormat {
//执行总次数
private static final int EXECUTE_COUNT=300;
//运行的线程数量
private static final int THREAD_COUNT=30;
/*private static SimpleDateFormat simpleDateFormat=new SimpleDateFormat("YYYY-MM-dd");*/
private static ThreadLocal<DateFormat> threadLocal= ThreadLocal.withInitial(() -> new SimpleDateFormat("yyyy-MM-dd"));
/* //lock
private static Lock lock=new ReentrantLock();*/
public static void main(String[] args) throws InterruptedException {
final Semaphore semaphore=new Semaphore(THREAD_COUNT);
final CountDownLatch countDownLatch=new CountDownLatch(EXECUTE_COUNT);
ExecutorService executorService=Executors.newCachedThreadPool();
for(int i=0;i<EXECUTE_COUNT;i++){
executorService.submit(()->{
try {
semaphore.acquire();
try{
/* lock.lock();*/
threadLocal.get().parse("2021-12-13");
} catch (NumberFormatException e){
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
} catch (ParseException e) {
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
}/*finally {
lock.unlock();
}*/
semaphore.release();
} catch (InterruptedException e) {
System.out.println("信号量发生错误");
e.printStackTrace();
System.exit(1);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
System.out.println("所有线程格式化日期成功");
}
}
5.DateTimeFormatter是java 8提供的新的日期时间api的类,它是线程安全的,可以在高并发场景下使用。
package com.lmf.demo.entity;
import java.text.DateFormat;
import java.text.ParseException;
import java.text.SimpleDateFormat;
import java.time.format.DateTimeFormatter;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class TestSimpleDateFormat {
//执行总次数
private static final int EXECUTE_COUNT=300;
//运行的线程数量
private static final int THREAD_COUNT=30;
private static DateTimeFormatter formatter=DateTimeFormatter.ofPattern("yyyy-MM-dd");
public static void main(String[] args) throws InterruptedException {
final Semaphore semaphore=new Semaphore(THREAD_COUNT);
final CountDownLatch countDownLatch=new CountDownLatch(EXECUTE_COUNT);
ExecutorService executorService=Executors.newCachedThreadPool();
for(int i=0;i<EXECUTE_COUNT;i++){
executorService.submit(()->{
try {
semaphore.acquire();
try{
formatter.parse("2021-12-13");
} catch (Exception e){
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
}
semaphore.release();
} catch (InterruptedException e) {
System.out.println("信号量发生错误");
e.printStackTrace();
System.exit(1);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
System.out.println("所有线程格式化日期成功");
}
}
6.jodb-time是第三方处理日期时间格式化的类库,它是线程安全的,效率也很高,推荐再高并发场景使用。
<dependency>
<groupId>joda-time</groupId>
<artifactId>joda-time</artifactId>
<version>2.9.9</version>
</dependency>
代码示例:
package com.lmf.demo.entity;
import org.joda.time.DateTime;
import org.joda.time.format.DateTimeFormat;
import org.joda.time.format.DateTimeFormatter;
import java.util.concurrent.CountDownLatch;
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
import java.util.concurrent.Semaphore;
public class TestSimpleDateFormat {
//执行总次数
private static final int EXECUTE_COUNT=300;
//运行的线程数量
private static final int THREAD_COUNT=30;
private static DateTimeFormatter formatter= DateTimeFormat.forPattern("yyyy-MM-dd");
public static void main(String[] args) throws InterruptedException {
final Semaphore semaphore=new Semaphore(THREAD_COUNT);
final CountDownLatch countDownLatch=new CountDownLatch(EXECUTE_COUNT);
ExecutorService executorService=Executors.newCachedThreadPool();
for(int i=0;i<EXECUTE_COUNT;i++){
executorService.submit(()->{
try {
semaphore.acquire();
try{
DateTime.parse("2021-12-14",formatter).toDate();
} catch (Exception e){
System.out.println("线程:" + Thread.currentThread().getName() + " 格式化日期失败");
e.printStackTrace();
System.exit(1);
}
semaphore.release();
} catch (InterruptedException e) {
System.out.println("信号量发生错误");
e.printStackTrace();
System.exit(1);
}
countDownLatch.countDown();
});
}
countDownLatch.await();
executorService.shutdown();
System.out.println("所有线程格式化日期成功");
}
}
综上所示:解决SimpleDateFormat类的线程安全问题几种方案中,局部变量法由于线程每次执行格式化都要创建SimpleDateFormat类的对象,这会浪费运行空间和消耗服务器的性能,因为JVM创建和销毁对象是要耗费性能的。所以,不推荐在高并发要求的生产环境使用。
synchronized锁方式和Lock锁方式在处理问题的本质上是一致的,通过加锁的方式,使同一时刻只能有一个线程执行格式化日期和时间的操作。这种方式虽然减少了SimpleDateFormat对象的创建,但是由于同步锁的存在,导致性能下降,所以,不推荐在高并发要求的生产环境使用。
ThreadLocal通过保存各个线程的SimpleDateFormat类对象的副本,使每个线程在运行时,各自使用自身绑定的SimpleDateFormat对象,互不干扰,执行性能比较高,推荐在高并发的生产环境使用。
DateTimeFormatter是Java 8中提供的处理日期和时间的类,DateTimeFormatter类本身就是线程安全的。
joda-time是第三方处理日期和时间的类库,线程安全,性能经过高并发的考验,推荐在高并发场景下的生产环境使用。