干货 | 字节跳动构建Data Catalog数据目录系统的实践(上)

技术

作为数据目录产品,Data Catalog 通过汇总技术和业务元数据,解决大数据生产者组织梳理数据、数据消费者找数和理解数的业务场景,并服务于数据开发和数据治理的产品体系。 本文介绍了字节跳动Data Catalog系统的构建和迭代过程,将分为上、下篇发布。 上篇主要围绕Data Catalog调研思路及技术架构展开。

picture.image

文 | 邱艺朴、 大滨 来自字节跳动数据平台开发套件团队

DataLeap

背景

01 - 元数据与Data Catalog

元数据,一般指描述数据的数据,对数据及信息资源的描述性信息。在当前大数据的上下文里,通常又可细分为技术元数据和业务元数据。

Data Catalog,是一种元数据管理的服务,会收集技术元数据,并在其基础上提供更丰富的业务上下文与语义,通常支持元数据编目、查找、详情浏览等功能。

元数据是Data Catalog系统的基础,而Data Catalog使元数据更好的发挥业务价值。

02 - Data Catalog的业务价值

Data Catalog系统主要服务于两类用户的两种核心场景。

对于数据生产者来说,他们利用Data Catalog系统来组织、梳理自己负责的各类元数据。生产者大部分是大数据开发的同学。通常,生产者会将某一批相关的元数据以目录等形式编排到一起,方便维护。另外,生产者会持续在技术元数据的基础上,丰富业务相关的属性,比如打业务标签,添加应用场景描述,字段解释等。

对于数据消费者来说,他们通过Data Catalog查找和理解他们需要的数据。在用户数量和角色上看,消费者远多于生产者,涵盖了数据分析师、产品、运营等多种角色的同学。通常,消费者会通过关键字检索,或者目录浏览,来查找解决自己业务场景的数据,并浏览详情介绍,字段描述,产出关系等,进一步的理解和信任数据。

另外,Data Catalog系统中的各类元数据,也会向上服务于数据开发、数据治理两大类产品体系。

在大数据领域,各类计算和存储系统百花齐放,概念和原理又千差万别,对于元数据的采集、组织、理解、信任等,都带来了很大挑战。因此,做好一个Data Catalog产品,本身是一个门槛低、上限高的工作,需要有一个持续打磨提升的过程。

03 - 旧版本痛点

字节跳动Data Catalog产品早期为了能较快解决Hive的元数据收集与检索工作,是基于LinkedIn Wherehows进行二次改造 。Wherehows架构相对简单,采用Backend + ETL的模式。初期版本,主要利用Wherehows的存储设计和ETL框架,自研实现前后端的功能模块。

随着字节跳动业务的快速发展, 公司内各类存储引擎不断引入,数据生产者和消费者的痛点都日益明显。之前系统的设计问题,也到了需要解决的阶段。具体来说:

  • 用户层面痛点:
  • 数据生产者: 多引擎环境下,没有便捷、友好的数据组织形式,来一站式的管理各类存储、计算引擎的技术与业务元数据。
  • 数据消费者: 各种引擎之间找数难,元数据的业务解释零散造成理解数难,难以信任。
  • 技术痛点:
  • 扩展性:新接入一类元数据时,整套系统伤筋动骨,开发成本月级别。
  • 可维护性:经过一段时间的修修补补,整个系统显得很脆弱,研发人员不敢随便改动;存储依赖重,同时使用了MySQL、ElasticSearch、图数据库等系统存储元数据,维护成本很高;接入一种元数据会增加2~3个ETL任务,运维成本直线上升。

04 - 新版本目标

基于上述痛点,我们重新设计实现Data Catalog系统,希望能达成如下目标:

  • 产品能力上,帮助数据生产者方便快捷组织元数据,数据消费者更好的找数和理解数。
  • 系统能力上,将接入新型元数据的成本从月级别降低为星期甚至天级别,架构精简,单人业余时间可运维。

DataLeap

调研与思路

01 - 业界产品调研

站在巨人的肩膀上,动手之前我们针对业界主流DataCatalog产品做了产品功能和技术调研。因各个系统都在频繁迭代,数据仅供参考。

| 产品分类 | 产品名称 | 支持元数据种类 | 重要产品功能 | 机器学习能力 | | 独角兽 | C** | 40+ | 搜索、血缘、标签、评价与打分、认证、问答、Connector市场等 | 有 | | A** | 60+ | 搜索、血缘、标签、问答、Connector市场等 | 有 | | 开源 | A** A** | 10+ | 搜索、血缘、标签等 | 无 | | L** D** | 40+ | 搜索、血缘、标签、统计大盘等 | 无 | | 商业化 | A** P** | 30+ | 搜索、血缘、标签、统计大盘等 | 无 |

02 - 升级思路

根据调研结论,结合字节已有业务特点,我们敲定了以下发展思路:

  • 对于搜索、血缘这类核心能力,做深做强,对齐业界领先水平。
  • 对于各产品间特色功能,挑选适合字节业务特点的做融合。
  • 技术体系上,存储和模型能力基于Apache Atlas改造,应用层支持从旧版本平滑迁移。

DataLeap

技术与产品概览

01 - 架构设计

picture.image

元数据的接入

  • 元数据接入支持T+1和近实时两种方式
  • 上游系统:包括各类存储系统(比如Hive、 Clickhouse等)和业务系统(比如数据开发平台、数据质量平台等)
  • 中间层:
  • ETL Bridge:T+1方式运行,通常是从外部系统拉取最新元数据,与当前Catalog系统的元数据做对比,并更新差异的部分
  • MQ:用于暂存各类元数据增量消息,供Catalog系统近实时消费
  • 与上游系统打交道的各类Clients,封装了操作底层资源的能力

核心服务层

系统的核心服务,根据职责的不同,细拆为以下子服务:

  • Catalog Service:支持元数据的搜索、详情、修改等核心服务
  • Ingestion Service:接受外部系统调用,写入元数据,或主动从MQ中消费增量元数据
  • Resource Control Plane:通过各类Clients,与底层的存储或业务系统交互,操作底层资源,比如建库建表,能力可插拔
  • Q&A Service:问答系统相关能力,支持对元数据的字段含义、使用场景等提问和回答,能力可插拔
  • ML Service:负责封装与机器学习相关的能力,能力可插拔
  • API Layer:以RESTful API的形式整合系统中的各类能力

存储层

针对不同场景,选用的不同的存储:

  • Meta Store:存放全量元数据和血缘关系,当前使用的是HBase
  • Index Store:存放用于加速查询,支持全文索引等场景的索引,当前使用的是ElasticSearch
  • Model Store:存放推荐、打标等的算法模型信息,使用HDFS,当ML Service启用时使用

元数据的消费

  • 数据的生产者和消费者,通过Data Catalog的前端与系统交互

  • 下游在线服务可通过OpenAPI访问元数据,与系统交互

  • Metadata Outputs Layer:提供除了API之外的另外一种下游消费方式

  • MQ:用于暂存各类元数据变更消息,格式由Catalog系统官方定义
  • Data warehouse:以数仓表的形式呈现的全量元数据

02 - 产品功能升级

picture.image

产品能力上的升级迭代,大致分为以下几个阶段:

  • 基础能力建设(2017-2019):数据源主要是离线数仓Hive,支持了Hive相关库表创建、元数据搜索与详情展示、表之间血缘,以及将相关表组织成业务视角的数据专题等
  • 中阶能力建设(2019-2020年中):数据源扩展了Clickhouse与Kafka,支持了Hive列血缘,Q&A问答系统等
  • 架构升级(2020年中-2021年初):产品能力迭代放缓,基于新设计升级架构
  • 能力提升与快速迭代(2021年至今):数据源扩展为包含离线、近实时、业务等端到端系统,搜索和血缘能力有明显增强,探索机器学习能力,产品形态更成熟稳定。另外我们还具备了ToB售卖的能力。

在下篇中,重点介绍Data Catalog关键技术和未来规划,敬请期待。

picture.image

开发套件团队正在招人,

点击 阅读原文

了解

产品介绍

火山引擎大数据研发治理套件DataLeap

一站式数据中台套件,帮助用户快速完成数据集成、开发、运维、治理、资产、安全等全套数据中台建设,帮助数据团队有效的降低工作成本和数据维护成本、挖掘数据价值、为企业决策提供数据支撑。 后台回复数字“2”了解产品

- End -

0
0
0
0
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论