「长文」可能是目前最全的LangChain AI资源库之一

技术
前言
本文主要内容是一个LangChain资源库,里面罗列了大大小小很多个基于LangChain框架的优秀项目,包括低代码、服务、代理、模板等工具类,还有像知识管理、聊天机器人等开源项目,还包括像视频、文章等AI学习资源,建议大家点赞收藏。

本文是对之前整理过的一版LangChain资源库的更新版本,原整理的地址为:基于LangChain的优秀项目资源库

🦜🔗 酷炫的LangChain资源 [1][2]

被筛选的使用LangChain的工具和项目清单。

LangChain是一个非常棒的框架,可以在瞬间完成LLM项目,当下生态系统正在迅速发展。这里是一个试图跟踪LangChain优秀项目资源的库。

订阅电子报[3] 了解有关 Awesome LangChain 的最新动态。我们每月发送几封电子邮件,介绍我们关注的文章、视频、项目和工具。

欢迎贡献。通过拉取请求添加链接或创建问题开始讨论。在贡献之前,请阅读贡献指南[4]。

[5]目录表

• 🦜🔗 LangChain 神奇资源[6]

• 目录[7]

• LangChain 框架[8]

• 工具[9]

• 低代码[10]

• 服务[11]

• 代理[12]

• 模板[13]

• 开源项目[14]

• 知识管理[15]

• 其他 / 聊天机器人[16]

• 学习[17]

• 笔记本[18]

• 视频[19]

• 文章[20]

• 替代方案[21]

• 此列表的补充[22]

LangChain框架

LangChain框架[23]

•LangChain[24]: 最初的 🐍 •LangChain.js[25]: JS兄弟 ✨ •Concepts[26]: Langchain概念文档 •Twitter账号[27]: 关注以获取最新更新

• Youtube频道[28]

•Discord[29]: 讨论 •Langchain博客[30]: 官方Langchain博客 •LangChainHub[31]: 收集与LangChain原语(如prompts、chains和agents)一起使用的所有工件

[32]其他语言的端口

LangChain的非官方其他语言框架列表。

•Langchain Go[33]: Golang Langchain [34] •LangchainRb[35]: Ruby Langchain [36] •BoxCars[37]: Ruby gem,使用LLM进行组合构建应用程序。受LangChain启发。 [38] •LangTorch[39]: 使用Java / JVM构建可组合的LLM应用程序。受LangChain启发。 [40] •LangChain4j[41]: 用于Java的LangChain [42] •LangChainJSDotNet[43]: 在.NET中使用官方的LangChain.js库 [44]

工具[45]

低代码[46]

•Flowise[47]:使用LangchainJS可以拖放界面构建自定义LLM流程的UI [48] •Langflow[49]:LangFlow是LangChain的UI [50] •LangchainUI[51]:开源聊天AI工具包 [52] •Yeager.ai[53]:Yeager.ai Agent是第一个设计用于帮助您轻松构建、原型和部署AI驱动的代理的Langchain Agent创建工具 [54]"

服务[55]

•GPTCache[56]: 用于为LLM查询创建语义缓存的库 [57] •Gorilla[58]: LLM的API仓库 [59] •LlamaHub[60]: 由社区创建的LLM数据加载程序库 [](https://camo.githubusercontent.com/a69d2a5e9cfae3676a6d3a0f9a1e4c850c0d3e7654dddf343c6e86280db279c0/687

代理商

•CollosalAI Chat[61]: 使用RLHF实现带动Colossal-AI项目的LLM [62] •AgentGPT[63]: 使用Langchain和OpenAI(Vercel / Nextjs)的AI agent [64] •Local GPT[65]: 基于私人GPT,使用Vicuna-7B模型替换GPT4ALL模型,并使用InstructorEmbeddings而不是LlamaEmbeddings的灵感 [66] •ThinkGPT[67]: 使用代理技术增强您的LLM并将其推向极限 [68] •Camel-AutoGPT[69]: 用于LLM和AutoGPT等自动代理的角色扮演方法 [70] •Private GPT[71]: 使用GPT的强大功能,100%私密地与您的文档互动,无数据泄漏 [72] •RasaGPT[73]: RasaGPT是基于Rasa和Langchain构建的第一个无头LLM聊天机器人平台 [74] •SkyAGI[75]:LLM代理人中新兴的人类行为模拟功能。 •PyCodeAGI[76]:一个小型的AGI实验,可以根据用户想要构建的应用程序生成一个Python应用程序。 •BabyAGI UI[77]:使在Web应用程序中运行和开发babyagi更加容易,就像一个ChatGPT一样。 •SuperAgent[78]: 将LLM Agents部署到生产环境 [79] •Voyager[80]: 具有大型语言模型的开放式体现智能体 [81] •ix[82]: 自主GPT-4智能体平台 [83] •DuetGPT[84]:一款对话式半自主开发助手,AI的代码配对编程,无需复制粘贴。 •Multi-Modal LangChain agents in Production[85]:部署LangChain代理并将其连接到Telegram。 •DemoGPT[86]:DemoGPT通过仅使用提示即可创建快速演示。它将ToT方法应用于Langchain文档树。 •SuperAGI[87]: SuperAGI - 一个以开发者为中心的开源自主人工智能代理框架 •Autonomous HR Chatbot[88]: 一个自主代理,可以使用手头的工具自主回答人力资源相关的查询 •BlockAGI[89]: BlockAGI进行迭代的、领域特定的研究,并输出详细的叙述性报告来展示其发现

模板[90]

•AI[91]: Vercel模板,用于使用React、Svelte和Vue构建基于人工智能的应用,对LangChain提供一流支持[92] •create-t3-turbo-ai[93]: 基于t3的、友好于Langchain的样板,用于构建类型安全、全栈、以LLM为动力的网络应用,使用Nextjs和Prisma[94] •LangChain.js LLM模板[95]: LangChain LLM模板,允许您训练自己的定制AI LLM模型。[96] •Streamlit模板[97]: 用于如何在Streamlit上部署LangChain的模板[98] •Codespaces模板[99]: 一种用于在几秒钟内快速开始使用LangChain的Codespaces模板![100] •Gradio模板[101]: 用于如何在Gradio上部署LangChain的模板[102] •AI入门[103]: 用于周末项目的Javascript AI入门堆栈,包括图像/文本模型、向量存储、身份验证和部署配置[104] •Embedchain[105]: 用于轻松创建LLM动力的机器人的框架,适用于任何数据集。[106]

平台

•Modal[107]:用于云端/ML计算的端到端堆栈 •Metal[108]:Metal是一个托管服务,可以让您构建AI产品而无需繁琐地管理基础设施 •Graphsignal[109]:用于AI代理和LLM驱动应用程序的可观察性。在生产中追踪、监视和调试LangChain。 •Mona[110]:用于监控您的OpenAI使用情况

开源项目

知识管理[111]

•Quiver[112]: 将你的大脑转储到你的GenerativeAI Vault中 •DocsGPT[113]: 用于文档搜索和辅助的GPT驱动聊天 •Chaindesk[114]: 语义搜索和文档检索的无代码平台 •Knowledge GPT[115]: 为您的文档提供准确答案和即时引用 •Knowledge[116]: Knowledge是一个保存、搜索、访问和探索您所有喜欢的网站、文档和文件的工具 •Anything LLM[117]: 一个全栈应用,可以将任何文档转化为智能聊天机器人,具有时尚的用户界面,更易于管理您的工作空间 •DocNavigator[118]: 基于AI的聊天机器人构建工具,旨在改善产品文档/支持网站的用户体验 •ChatFiles[119]: 上传您的文档,然后与之聊天。由GPT / Embedding / TS / NextJS提供支持 •DataChad[120]: 一个让您可以与任何数据源聊天的streamlit应用程序。支持使用GPT4All的OpenAI和本地模式 •Second Brain AI Agent[121]: 一个streamlit应用程序,可以使用OpenAI和ChromaDB在本地自动对话您的第二大脑笔记

其他 / 聊天机器人

•DB GPT[122]:通过本地GPT与数据和环境进行交互,无数据泄露,100%私密、100%安全。[123] •AudioGPT[124]:理解和生成语音、音乐、声音和说话头像。[125] •Paper QA[126]: 用于从带引用的文档中回答问题的LLM链 [127] •Chat Langchain[128]: 专注于LangChain文档的问题回答的本地托管聊天机器人 [129] •Langchain Chat[130]: LangChain Chat 的另一个 Next.js 前端。 [131] •Book GPT[132]: 放下一本书,开始提问。 [133] •Chat LangchainJS[134]: Chat Langchain的NextJS版本 •Doc Search[135]: 使用GPT-3构建的与书籍对话 •Fact Checker[136]: 使用langchain对LLM输出进行事实核查 •MM ReAct[137]: 多模态 ReAct 设计 •QABot[138]: 使用自然语言查询通过 langchain 和 openai 查询本地或远程文件或数据库 •GPT Automator[139]: 你的语音控制的 Mac 助手 •Teams LangchainJS(团队LangchainJS)[140]:演示LangChainJS与Teams / Bot Framework机器人。 •ChatGPT(聊天GPT)[141]:用于node.js和Docker的ChatGPT和Langchain示例。 •FlowGPT(流程GPT)[142]:使用人工智能生成图表。 •langchain-text-summarizer[143]: 使用LangChain进行文本摘要的示例streamlit应用程序 [144] •Langchain Chat Websocket[145]: 有关LangChain LLM聊天的websocket流式响应 [146] •langchain_yt_tools[147]: Langchain工具,用于搜索/提取/转录YouTube视频的文本记录 [148] •智慧飞行员[149]: 一款使用OpenAI的语言模型生成、分析和选择给定问题的最佳答案的Python程序。 •Howdol[150]: 一个有用的聊天机器人,可以回答问题。 •MrsStax[151]: QA Slack机器人。 •ThoughtSource⚡[152]:一个用于机器思维科学的框架 •ChatGPT Langchain[153]:使用Huggingface上的langchain的ChatGPT克隆 •Chat Math Techniques[154]:使用Huggingface上的math techniques的langchain chat •Notion QA[155]: Notion问答机器人 [156] •QNimGPT[157]: 在IBM量子计算机模拟器或OpenAI GPT-3.5上玩Nim游戏 •ChatPDF[158]: ChatGPT + 企业数据与Azure OpenAI [159]" •Chat with Scanned Documents[160]: 与使用Dynamic Web TWAIN扫描的文档进行聊天的演示。 •snowChat ❄️[161]: 与您的snowflake数据库进行聊天的工具。 •Airtable-QnA[162]: 🌟 用于Airtable内容的问答工具。WingmanAI[163]:与系统和麦克风音频的实时转录进行交互的工具。 •TutorGPT[164]:用于辅导任务的动态少样本元提示。 •Cheshire Cat[165]:具有可直接使用的聊天集成和插件开发平台的定制AGI机器人。 •Got Chaat Bot[166]: 用于创建Game of Thrones聊天机器人的存储库(例如与Tyrion Lannister交谈) [167] •Dialoqbase[168]: 允许您创建具有自己知识库的自定义聊天机器人的Web应用程序 [169] •CSV-AI 🧠[170]: CSV-AI是由LangChain提供支持的终极应用程序,可帮助您揭示CSV文件中隐藏的见解。 •MindGeniusAI[171]:使用ChatGPT自动生成思维导图 •Robby-Chatbot[172]:用于与CSV、PDF、TXT文件和YTB视频交互的AI聊天机器人,使用Langchain、OpenAI和Streamlit •AI Chatbot[173]:由Vercel Labs构建的功能齐全、可定制的Next.js AI聊天机器人 •Instrukt[174]: 一个在终端中的全功能AI环境。构建、测试和指导代理。 [175] •OpenChat[176]: LLMs定制聊天机器人控制台 ⚡. [177] [178] •Twitter Agent[179]: 爬取推文,并在交互式终端中对其进行摘要和对话。 [180]" •GPT Migrate[181]: 轻松将您的代码库从一个框架或语言迁移到另一个框架或语言。 •Code Interpreter API[182]: 关于ChatGPT Code Interpreter的开源实现。 [183]

[184]学习

[185]笔记本

•Langchain教程[186]: LangChain库的概述和教程 •LangChain中文入门指南[187]: 面向初学者的LangChain中文教程 •Flan5 LLM[188]: 使用LangChain进行思路链和多任务指令的PDF问答,Flan5在HuggingFace上 •LangChain 手册[189]:Pinecone / James Briggs 的 LangChain 手册 •查询 YouTube 视频剪辑文本[190]:查询 YouTube 视频剪辑文本,将时间戳作为信息源以证明答案的合法性 •llm-lobbyist[191]:利用大型语言模型作为企业游说者 •Langchain语义搜索[192]: 使用GPT3、LangChain和Python搜索和索引自己的Google Drive文件

• GPT政治罗盘[193]

•llm-grovers-search-party[194]: 利用Qiskit、OpenAI和LangChain展示Grover算法

• TextWorld ReAct Agent[195]

• LangChain <> Wolfram Alpha[196]

• BYO Knowledge Graph[197]

视频播放列表

• Sam Witteveen的LangChain系列[198]

• LangChain教程播放列表[199]

• LangChain James Briggs的播放列表[200]

• Greg Kamradt的播放列表[201]

其他LLM框架[202]

•Transformers Agents[203]:在transformers之上提供自然语言API •LlamaIndex[204]:提供将LLM(语言模型)与外部数据连接的中心接口 •Botpress[205]:构建聊天机器人的基本模块 •Haystack[206]: 使用Transformer模型和LLM与数据进行交互的NLP框架 [207] •Semantic Kernel[208]: Microsoft C# SDK,可快速轻松地将尖端LLM技术集成到应用程序中 [209] •Promptify[210]: 提示工程 | 使用GPT或其他基于提示的模型获取结构化输出。 [211] •PromptSource[212]: 关于创建、共享和使用自然语言提示的工具包。 [213] •Agent-LLM[214]: 一个人工智能自动化平台。 [215] •LLM Agents[216]: 构建由LLM控制的代理。 [217] •MiniChain[218]: 一个用于使用大型语言模型编码的小型库。 [219] •Griptape[220]: 用于AI工作流和管道的Python框架,具有思维链推理、外部工具和记忆功能。 •llm-chain[221]: 是一个强大的用于构建LLM链的Rust库,允许您对文本进行摘要和完成复杂任务。 •PromptFlow[222]: 创建可执行的流程图,将LLMs(大型语言模型)、提示、Python函数和条件逻辑链接在一起。 •OpenLM[223]: 一个可随时使用的与OpenAI兼容的库,可以从任何其他托管推理API中调用LLMs。还有Typescript[224] •Dust[225]: 设计和部署大型语言模型应用 •e2b[226]: 用于构建和部署虚拟开发者代理的开源平台 •SuperAGI[227]: 一个开发者优先的开源自主AI代理框架. •SmartGPT[228]:一个提供LLMs能够使用插件完成复杂任务的程序。 •TermGPT[229]:使得类似于GPT-4的LLMs能够规划和执行终端命令的能力。 •ReLLM[230]:用于语言模型完成的正则表达式。 •OpenDAN[231]: 开源个人人工智能操作系统,将各种人工智能模块整合在一个地方供个人使用。 [232] •OpenLLM[233]: 一个开放的平台,用于在生产中操作大型语言模型(LLM)。使用OpenLLM轻松进行微调,提供服务,部署和监控任何LLM。 [234] •FlagAI[235]: FlagAI(Fast LArge-scale General AI models)是一个快速、易于使用和可扩展的大型模型工具包。 [236] •AI.JSX[237]: JavaScript的AI应用框架 [238] •Outlines[239]: 生成模型编程 (Python) [240] •AI Utils[241]: 用于构建AI应用程序、聊天机器人和代理的TypeScript优先库。 [242] •MetaGPT[243]:多代理元编程框架:给定一行需求,返回 PRD、设计、任务、仓库和 CI。 •Hyv[244]:可能是在 Node.js 中使用任何 AI 模型并轻松创建复杂交互的最简单方法。 •Autochain[245]:使用 AutoChain 构建轻量、可扩展和可测试的 LLM 代理。 •TypeChat[246]: TypeChat是一个使用类型构建自然语言界面的库。 •Marvin[247]: ✨构建能带来快乐的AI界面。 •LMQL[248]: 一个用于大型语言模型的编程语言。 •LLMFlow[249]:简单、清晰和透明的LLM应用 •Ax[250]:TypeScript的综合AI框架

[251]这个列表的补充

•开源LLM清单[252]: 一份可供商业使用的开源LLM清单 •Awesome LLM[253]: Awesome-LLM: 一个精心策划的大型语言模型资源清单 •LLaMA Cult and More[254]: 跟踪经济实惠的LLM、🦙 Cult和其他内容的清单

References

[1] : https://awesome.re/
[2] : https://camo.githubusercontent.com/a9aec4b2077141823ec3d751c28014be2f514acd8ead8a510a86bde0cfc8c9bf/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6b79726f6c6162732f617765736f6d652d6c616e67636861696e3f7374796c653d736f6369616c
[3] 订阅电子报: https://awesomelangchain.substack.com/
[4] 贡献指南: https://github.com/kyrolabs/awesome-langchain/blob/main/contributing.md
[5] : https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#table-of-contents
[6] 🦜🔗 LangChain 神奇资源: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#-awesome-langchain--
[7] 目录: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#table-of-contents
[8] LangChain 框架: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#langchain-framework
[9] 工具: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#tools
[10] 低代码: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#low-code
[11] 服务: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#services
[12] 代理: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#agents
[13] 模板: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#templates
[14] 开源项目: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#open-source-projects
[15] 知识管理: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#knowledge-management

[16] 其他 / 聊天机器人: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#other--chatbots

[17] 学习: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#learn

[18] 笔记本: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#notebooks

[19] 视频: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#videos

[20] 文章: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#articles

[21] 替代方案: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#alternatives

[22] 此列表的补充: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#complement-to-this-list

[23] LangChain框架: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#langchain-framework

[24] LangChain: https://github.com/hwchase17/langchain

[25] LangChain.js: https://github.com/hwchase17/langchainjs

[26] Concepts: https://docs.langchain.com/docs/

[27] Twitter账号: https://twitter.com/LangChainAI

[28] Youtube频道: https://www.youtube.com/channel/UCC-lyoTfSrcJzA1ab3APAgw

[29] Discord: https://discord.gg/6adMQxSpJS

[30] Langchain博客: https://blog.langchain.dev/

[31] LangChainHub: https://github.com/hwchase17/langchain-hub

[32] : https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#ports-to-other-languages

[33] Langchain Go: https://github.com/tmc/langchaingo

[34] : https://camo.githubusercontent.com/7725f4f6e2147276d02cc4f64d8100981661adbe6386341703f98efaa4f30cef/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f746d632f6c616e67636861696e676f3f7374796c653d736f6369616c

[35] LangchainRb: https://github.com/andreibondarev/langchainrb

[36] : https://camo.githubusercontent.com/55c4a1afcfa5004b5db84b27598c8e48328b55aa5695dadac63fae8e4948fd89/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616e64726569626f6e64617265762f6c616e67636861696e72623f7374796c653d736f6369616c

[37] BoxCars: https://github.com/BoxcarsAI/boxcars

[38] : https://camo.githubusercontent.com/e26e61c79121588cd06e0d6a66aa69f22fcd222bbe6eca0951d8e4ab6267c7b2/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f426f786361727341492f626f78636172733f7374796c653d736f6369616c

[39] LangTorch: https://github.com/Knowly-ai/langtorch

[40] : https://camo.githubusercontent.com/11cfd1693f5867155bc206215563505310f50c4e065f6d5fc69b0569a1a41141/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f4b6e6f776c792d61692f6c616e67746f7263683f7374796c653d736f6369616c

[41] LangChain4j: https://github.com/langchain4j/langchain4j

[42] : https://camo.githubusercontent.com/9e3b83d09e49cae5a0e9632182a4fb43fad0259bd740e1ffa0a382c7c19f8a35/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6c616e67636861696e346a2f6c616e67636861696e346a3f7374796c653d736f6369616c

[43] LangChainJSDotNet: https://github.com/iassafc/LangChainJSDotNet

[44] : https://camo.githubusercontent.com/8a14ce73738f609e833326e0a82736be1ba761ef03f602c669201b6cdbd58411/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f696173736166632f4c616e67436861696e4a53446f744e65743f7374796c653d736f6369616c

[45] 工具: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#tools

[46] 低代码: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#low-code

[47] Flowise: https://github.com/FlowiseAI/Flowise

[48] : https://camo.githubusercontent.com/1ba1ab2cc7be5ca0a17eadbc4cff268741a7d0c606a6d33ac90077b54c903ea9/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f466c6f7769736541492f466c6f776973653f7374796c653d736f6369616c

[49] Langflow: https://github.com/logspace-ai/langflow

[50] : https://camo.githubusercontent.com/196fc1df5f5e5d6b1c0d147c121168693afe44bbadc87cc3f443efd46b1ec74f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6c6f6773706163652d61692f6c616e67666c6f773f7374796c653d736f6369616c

[51] LangchainUI: https://github.com/homanp/langchain-ui

[52] : https://camo.githubusercontent.com/e9852774df90de16175df3eddcb12ad2974b95d3dd89cf53a7415850f25d528e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f686f6d616e702f6c616e67636861696e2d75693f7374796c653d736f6369616c

[53] Yeager.ai: https://github.com/yeagerai/yeagerai-agent

[54] : https://camo.githubusercontent.com/08865c0e9b8bbf60e9bd2e40316cdb5444d53908047d4a0a40b92b839dad0635/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f79656167657261692f79656167657261692d6167656e743f7374796c653d736f6369616c

[55] 服务: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#services

[56] GPTCache: https://github.com/zilliztech/GPTCache

[57] : https://camo.githubusercontent.com/00b53511e42ff679259ffae7a508ddc2ccdd07f82c0f56adee16f17f4f6a5033/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7a696c6c697a746563682f47505443616368653f7374796c653d736f6369616c

[58] Gorilla: https://github.com/ShishirPatil/gorilla

[59] : https://camo.githubusercontent.com/114728d53d657728c659e84ab512e3f7af9e4392dd83b9db1539c340cf776965/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f53686973686972506174696c2f676f72696c6c613f7374796c653d736f6369616c

[60] LlamaHub: https://github.com/emptycrown/llama-hub

[61] CollosalAI Chat: https://github.com/hpcaitech/ColossalAI/tree/main/applications/Chat

[62] : https://camo.githubusercontent.com/a294d2683fcc9c5a7d3606036c8f40f711045255ade0d47000a607e620f8fd77/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6870636169746563682f436f6c6f7373616c41493f7374796c653d736f6369616c

[63] AgentGPT: https://github.com/reworkd/AgentGPT

[64] : https://camo.githubusercontent.com/0db278150651f631d291ca1ef7943b8a28343cb5d471ee6ff65fdefc8019a9a4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7265776f726b642f4167656e744750543f7374796c653d736f6369616c

[65] Local GPT: https://github.com/PromtEngineer/localGPT

[66] : https://camo.githubusercontent.com/afc5bbd05aeb640191c3287fde6e2fcdaf90f5082c71e4bde61d132aea8d1b44/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f50726f6d74456e67696e6565722f6c6f63616c4750543f7374796c653d736f6369616c

[67] ThinkGPT: https://github.com/alaeddine-13/thinkgpt

[68] : https://camo.githubusercontent.com/b0b4ec2adfe1dff62cc9a965c17f540887b23cc21b06138e5f61f3d3964bd286/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616c61656464696e652d31332f7468696e6b6770743f7374796c653d736f6369616c

[69] Camel-AutoGPT: https://github.com/SamurAIGPT/Camel-AutoGPT

[70] : https://camo.githubusercontent.com/a17e9217d26674eed8f86b32e6737b09510de507eaa79efd8ab262154732b6a6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f53616d757241494750542f43616d656c2d4175746f4750543f7374796c653d736f6369616c

[71] Private GPT: https://github.com/imartinez/privateGPT

[72] : https://camo.githubusercontent.com/ba10dae69316f5005522d167d2b602ba6c40b272a92735a72da8d0caa531e032/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f696d617274696e657a2f707269766174654750543f7374796c653d736f6369616c

[73] RasaGPT: https://github.com/paulpierre/RasaGPT

[74] : https://camo.githubusercontent.com/27b2aaab1dc52e23ab7f64190bbe99efb3b2ac11e10f369ea281933980fd3d55/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7061756c7069657272652f526173614750543f7374796c653d736f6369616c

[75] SkyAGI: https://github.com/litanlitudan/skyagi

[76] PyCodeAGI: https://github.com/chakkaradeep/pyCodeAGI

[77] BabyAGI UI: https://github.com/miurla/babyagi-ui

[78] SuperAgent: https://github.com/homanp/superagent

[79] : https://camo.githubusercontent.com/a7df1f9b460cdfb2185b935b4c0d2065b846a95518abc3d9b0204dda3f4224d0/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f686f6d616e702f73757065726167656e743f7374796c653d736f6369616c

[80] Voyager: https://github.com/MineDojo/Voyager

[81] : https://camo.githubusercontent.com/f5727e805f338b458d65c6474a276368a5d64648c3574cfdb774cef15d41951a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f4d696e65446f6a6f2f566f79616765723f7374796c653d736f6369616c

[82] ix: https://github.com/kreneskyp/ix

[83] : https://camo.githubusercontent.com/7642ee0b9bcf57f1d888371b27cd16ec7730d3d59231a3c49ad5321e9f5b874e/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6b72656e65736b79702f69783f7374796c653d736f6369616c

[84] DuetGPT: https://github.com/kristoferlund/duet-gpt

[85] Multi-Modal LangChain agents in Production: https://github.com/steamship-packages/langchain-agent-production-starter

[86] DemoGPT: https://github.com/melih-unsal/DemoGPT

[87] SuperAGI: https://github.com/TransformerOptimus/SuperAGI

[88] Autonomous HR Chatbot: https://github.com/stepanogil/autonomous-hr-chatbot

[89] BlockAGI: https://github.com/blockpipe/blockagi

[90] : https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#templates

[91] AI: https://github.com/vercel-labs/ai

[92] : https://camo.githubusercontent.com/73cdd9b1326e5f3f12241588694b3e2177967c63617a7ab39f6f0b2a8e29a181/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f76657263656c2d6c6162732f61693f7374796c653d736f6369616c

[93] create-t3-turbo-ai: https://github.com/zckly/create-t3-turbo-ai

[94] : https://camo.githubusercontent.com/be0fec1598a9e399614998e99614698be34e38cfa1e49119c7163bab0d086f0f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7a636b6c792f6372656174652d74332d747572626f2d61693f7374796c653d736f6369616c

[95] LangChain.js LLM模板: https://github.com/Conner1115/LangChain.js-LLM-Template

[96] : https://camo.githubusercontent.com/8789af1935a695b9973b81795d513aa7cce5f3206c0c1fb92b0f8b7c372c69ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f436f6e6e6572313131352f4c616e67436861696e2e6a732d4c4c4d2d54656d706c6174653f7374796c653d736f6369616c

[97] Streamlit模板: https://github.com/hwchase17/langchain-streamlit-template

[98] : https://camo.githubusercontent.com/58c68659e9cbd2320ba8e95f39d107f198f9494df9b9a572c285a14945cd6158/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6877636861736531372f6c616e67636861696e2d73747265616d6c69742d74656d706c6174653f7374796c653d736f6369616c

[99] Codespaces模板: https://github.com/lostintangent/codespaces-langchain

[100] : https://camo.githubusercontent.com/48c12a002fffa01390175ab943dcb85e3e242c2109dd4b2bf7f24d95517a5188/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6c6f7374696e74616e67656e742f636f64657370616365732d6c616e67636861696e3f7374796c653d736f6369616c

[101] Gradio模板: https://github.com/hwchase17/langchain-gradio-template

[102] : https://camo.githubusercontent.com/ce54042bf524fdbef5961f2d72191386cbe10cdedaf15e4f77bfa8f2ea4ab59c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6877636861736531372f6c616e67636861696e2d67726164696f2d74656d706c6174653f7374796c653d736f6369616c

[103] AI入门: https://github.com/a16z-infra/ai-getting-started

[104] : https://camo.githubusercontent.com/2a29458d908d24711780dc463a2f3466b87ef914b7c5d4255ab3a1f5f1eae11b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6131367a2d696e6672612f61692d67657474696e672d737461727465643f7374796c653d736f6369616c

[105] Embedchain: https://github.com/embedchain/embedchain

[106] : https://camo.githubusercontent.com/09656217c7860883a7255ea799bfc99a5ba8db96f5d8f99884ccb5bcc67016dd/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f656d626564636861696e2f656d626564636861696e3f7374796c653d736f6369616c

[107] Modal: https://modal.com/docs/guide/ex/potus\_speech\_qanda

[108] Metal: https://getmetal.io/

[109] Graphsignal: https://graphsignal.com/

[110] Mona: https://github.com/monalabs/mona-openai

[111] 知识管理: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#knowledge-management

[112] Quiver: https://github.com/StanGirard/quiver

[113] DocsGPT: https://github.com/arc53/docsgpt

[114] Chaindesk: https://github.com/gmpetrov/databerry

[115] Knowledge GPT: https://github.com/mmz-001/knowledge\_gpt

[116] Knowledge: https://github.com/KnowledgeCanvas/knowledge

[117] Anything LLM: https://github.com/Mintplex-Labs/anything-llm

[118] DocNavigator: https://github.com/vgulerianb/DocNavigator

[119] ChatFiles: https://github.com/guangzhengli/ChatFiles

[120] DataChad: https://github.com/gustavz/DataChad

[121] Second Brain AI Agent: https://github.com/flepied/second-brain-agent

[122] DB GPT: https://github.com/csunny/DB-GPT

[123] : https://camo.githubusercontent.com/3bcfab955ea5ab9ecc0f8c6328861f8aff429cbfd068f58cdca34b61b6627fb6/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6373756e6e792f44422d4750543f7374796c

[124] AudioGPT: https://github.com/AIGC-Audio/AudioGPT

[125] : https://camo.githubusercontent.com/5470b3c3dc42d53dc2278c61da746ca64a977dc3a07b176b0681a6332a69fc29/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f414947432d417564696f2f417564696f4750543f7374796c

[126] Paper QA: https://github.com/whitead/paper-qa

[127] : https://camo.githubusercontent.com/dba68995d8c57a8f685b08c2a8c4597b37cdc2c18cbcabc861da7c233bb0c759/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f776869746561642f70617065722d71613f7374796c653d736f6369616c

[128] Chat Langchain: https://github.com/hwchase17/chat-langchain

[129] : https://camo.githubusercontent.com/c59033679486f2a986cbce41c685156cf24dbbacf54a121865ec45001a37369b/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6877636861736531372f636861742d6c616e67636861696e3f7374796c653d736f6369616c

[130] Langchain Chat: https://github.com/zahidkhawaja/langchain-chat-nextjs

[131] : https://camo.githubusercontent.com/041179065940c15acf156b3cea8dbc29abb5d68315bfd081ea81a66da9469950/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7a616869646b686177616a612f6c616e67636861696e2d636861742d6e6578746a733f7374796c653d736f6369616c

[132] Book GPT: https://github.com/fraserxu/book-gpt

[133] : https://camo.githubusercontent.com/6060f86aad12f6395748728471eccf47e34a979ca7a3b3de3cc4151c851cb044/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f66726173657278752f626f6f6b2d6770743f7374796c653d736f6369616c

[134] Chat LangchainJS: https://github.com/sullivan-sean/chat-langchainjs

[135] Doc Search: https://github.com/namuan/dr-doc-search

[136] Fact Checker: https://github.com/jagilley/fact-checker

[137] MM ReAct: https://github.com/microsoft/MM-REACT

[138] QABot: https://github.com/hardbyte/qabot

[139] GPT Automator: https://github.com/chidiwilliams/GPT-Automator

[140] Teams LangchainJS(团队LangchainJS): https://github.com/SidU/teams-langchain-js

[141] ChatGPT(聊天GPT): https://github.com/biff-ai/chatgpt-langchainjs-example

[142] FlowGPT(流程GPT): https://github.com/nilooy/flowgpt

[143] langchain-text-summarizer: https://github.com/alphasecio/langchain-text-summarizer

[144] : https://camo.githubusercontent.com/96e633813d55ac19437cd9e1d0e2f9cebde40212ea3c0d5656599e303e3f934d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616c706861736563696f2f6c616e67636861696e2d746578742d73756d6d6172697a65723f7374796c653d736f6369616c

[145] Langchain Chat Websocket: https://github.com/pors/langchain-chat-websockets

[146] : https://camo.githubusercontent.com/7861ad47175002b4345b10d9bc16cd1229eea9c6378d6652528437ac84afbf95/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f706f72732f6c616e67636861696e2d636861742d776562736f636b6574733f7374796c653d736f6369616c

[147] langchain_yt_tools: https://github.com/venuv/langchain\_yt\_tools

[148] : https://camo.githubusercontent.com/21fd2e1ca841205ca16498d558765d9e71eedb6cecb76df2e484e9fd8bbf1dae/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f76656e75762f6c616e67636861696e5f79745f746f6f6c733f7374796c653d736f6369616c

[149] 智慧飞行员: https://github.com/jaredkirby/SmartPilot

[150] Howdol: https://github.com/bborn/howdoi.ai

[151] MrsStax: https://github.com/normandmickey/MrsStax

[152] ThoughtSource⚡: https://github.com/OpenBioLink/ThoughtSource

[153] ChatGPT Langchain: https://huggingface.co/spaces/JavaFXpert/Chat-GPT-LangChain

[154] Chat Math Techniques: https://huggingface.co/spaces/JavaFXpert/gpt-math-techniques

[155] Notion QA: https://github.com/hwchase17/notion-qa

[156] : https://camo.githubusercontent.com/75bda4b7eff8eb8fcbad3992822de97bfd27d774b6da8ae7f09a1102e4a4b81a/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6877636861736531372f6e6f74696f6e2d71613f7374796c653d736f6369616c

[157] QNimGPT: https://huggingface.co/spaces/rituthombre/QNim

[158] ChatPDF: https://github.com/akshata29/chatpdf

[159] : https://camo.githubusercontent.com/d5098faa9a4f6b26495a0362803705327055023b92e107993684aed0dfef0d71/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f616b736861746132392f636861747064663f7374796c653d736f6369616c

[160] Chat with Scanned Documents: https://github.com/tony-xlh/Chat-with-Scanned-Documents

[161] snowChat ❄️: https://github.com/kaarthik108/snowChat

[162] Airtable-QnA: https://github.com/ikram-shah/airtable-qna

[163] WingmanAI: https://github.com/e-johnstonn/wingmanAI

[164] TutorGPT: https://github.com/plastic-labs/tutor-gpt

[165] Cheshire Cat: https://github.com/cheshire-cat-ai/core

[166] Got Chaat Bot: https://github.com/parker84/GoT-chat-bot

[167] : https://camo.githubusercontent.com/6813dad9e667de9c5d94d7e8444ef85509be6408586d4065cdafa9149371758f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7061726b657238342f476f542d636861742d626f743f7374796c653d736f6369616c

[168] Dialoqbase: https://github.com/n4ze3m/dialoqbase

[169] : https://camo.githubusercontent.com/6ce8442522ab1fa35ac3f340bb48534f4a2bfba2a4abd40b4f2d19035e3eb09d/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6e347a65336d2f6469616c6f71626173653f7374796c653d736f6369616c

[170] CSV-AI 🧠: https://python.langchain.com/en/latest/modules/indexes/document\_loaders/examples/snowflake.html

[171] MindGeniusAI: https://github.com/xianjianlf2/MindGeniusAI

[172] Robby-Chatbot: https://github.com/yvann-hub/Robby-chatbot

[173] AI Chatbot: https://github.com/vercel-labs/ai-chatbot

[174] Instrukt: https://github.com/blob42/Instrukt

[175] : https://camo.githubusercontent.com/63ba3a72ff05f96df0ba22aa7c1a30f2995ed0ac1641d9f919792ce7496a52a4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f626c6f6234322f496e737472756b743f7374796c653d736f6369616c

[176] OpenChat: https://github.com/openchatai/OpenChat/

[177] : https://camo.githubusercontent.com/f5475122d111f75d99cb7b35a07cf2dc9d603e9d88945ab6b7c294607cbac291/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6f70656e6368617461692f4f70656e436861743f7374796c653d736f6369616c

[178] : https://camo.githubusercontent.com/f5475122d111f75d99cb7b35a07cf2dc9d603e9d88945ab6b7c294607cbac291/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6f70656e6368617461692f4f70656e436861743f7374796c653d736f6369616c

[179] Twitter Agent: https://github.com/ahmedbesbes/twitter-agent/

[180] : https://camo.githubusercontent.com/3e7b95ed0daaef482842f747c9f18875cb155d31cde6236f4aa1571a1a0e4a53/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f61686d65646265736265732f747769747465722d6167656e743f7374796c653d736f6369616c

[181] GPT Migrate: https://github.com/0xpayne/gpt-migrate

[182] Code Interpreter API: https://github.com/shroominic/codeinterpreter-api

[183] : https://camo.githubusercontent.com/75d2e23be179c6b0eb0a11de9b2f408aedd67f96a95053e45a066eac51b401cc/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f7368726f6f6d696e69632f636f6465696e7465727072657465722d6170693f7374796c653d736f6369616c

[184] : https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#learn

[185] : https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#notebooks

[186] Langchain教程: https://github.com/gkamradt/langchain-tutorials

[187] LangChain中文入门指南: https://github.com/liaokongVFX/LangChain-Chinese-Getting-Started-Guide

[188] Flan5 LLM: https://colab.research.google.com/drive/1AVh9dOsG9DKzfK7gOFrJuitPIcLPqlbO?usp=sharing

[189] LangChain 手册: https://github.com/pinecone-io/examples/tree/master/generation/langchain/handbook

[190] 查询 YouTube 视频剪辑文本: https://colab.research.google.com/drive/1sKSTjt9cPstl\_WMZ86JsgEqFG-aSAwkn?usp=sharing

[191] llm-lobbyist: https://github.com/JohnNay/llm-lobbyist

[192] Langchain语义搜索: https://github.com/venuv/langchain\_semantic\_search

[193] GPT政治罗盘: https://colab.research.google.com/drive/1xt2IsFPGYMEQdoJFNgWNAjWGxa60VXdV

[194] llm-grovers-search-party: https://github.com/JavaFXpert/llm-grovers-search-party

[195] TextWorld ReAct Agent: https://colab.research.google.com/drive/19WTIWC3prw5LDMHmRMvqNV2loD9FHls6?usp=sharing

[196] LangChain <> Wolfram Alpha: https://colab.research.google.com/drive/1AAyEdTz-Z6ShKvewbt1ZHUICqak0MiwR?usp=sharing

[197] BYO Knowledge Graph: https://github.com/prof-frink-lab/slangchain/blob/main/docs/modules/knowledge\_graph/examples/byo\_knowledge\_graph.ipynb

[198] Sam Witteveen的LangChain系列: https://www.youtube.com/watch?v=J\_0qvRt4LNk&list=PL8motc6AQftk1Bs42EW45kwYbyJ4jOdiZ

[199] LangChain教程播放列表: https://www.youtube.com/playlist?list=PL611FKPtL866MnlDPHvI3KwVGqCB-QJAx

[200] LangChain James Briggs的播放列表: https://www.youtube.com/watch?v=nE2skSRWTTs&list=PLIUOU7oqGTLieV9uTIFMm6\_4PXg-hlN6F

[201] Greg Kamradt的播放列表: https://www.youtube.com/watch?v=\_v\_fgW2SkkQ&list=PLqZXAkvF1bPNQER9mLmDbntNfSpzdDIU5

[202] 其他LLM框架: https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#other-llm-frameworks

[203] Transformers Agents: https://huggingface.co/docs/transformers/transformers\_agents

[204] LlamaIndex: https://github.com/jerryjliu/llama\_index

[205] Botpress: https://github.com/botpress/botpress

[206] Haystack: https://github.com/deepset-ai/haystack

[207] : https://camo.githubusercontent.com/218024f0ff54369f855336782710773b791a9249b01c132a01d9d358d18b78d4/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f646565707365742d61692f686179737461636b3f7374796c653d736f6369616c

[208] Semantic Kernel: https://github.com/microsoft/semantic-kernel

[209] : https://camo.githubusercontent.com/0c8ed625bbebf26eafaaedf292e634000d328848a5a2ac2fcafbbd88733b3c60/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6d6963726f736f66742f73656d616e7469632d6b65726e656c3f7374796c653d736f6369616c

[210] Promptify: https://github.com/promptslab/Promptify

[211] : https://camo.githubusercontent.com/fb7a18c8e3a6a388d9d8c051728dff99856954ad9577bb26dffb08800fb378ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f70726f6d7074736c61622f50726f6d70746966793f7374796c653d736f6369616c

[212] PromptSource: https://github.com/bigscience-workshop/promptsource

[213] : https://camo.githubusercontent.com/9ec4b56ec5cb8db9de1c882aec3288814dbaae61879d35b6371817c324dca465/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f626967736369656e63652d776f726b73686f702f70726f6d7074736f757263653f7374796c653d736f6369616c

[214] Agent-LLM: https://github.com/Josh-XT/Agent-LLM

[215] : https://camo.githubusercontent.com/4649baddc026d521e526188b7195043cb5cc05e1ba8af77c7ed78a60984490ee/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f4a6f73682d58542f4167656e742d4c4c4d3f7374796c653d736f6369616c

[216] LLM Agents: https://github.com/mpaepper/llm\_agents

[217] : https://camo.githubusercontent.com/038e74d24a91dd6f5399618900607ddf63607729032443fd40d54eac2a5b3fe7/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6d706165707065722f6c6c6d5f6167656e74733f7374796c653d736f6369616c

[218] MiniChain: https://github.com/srush/MiniChain

[219] : https://camo.githubusercontent.com/1932058a2e0df4209bfc4f606e5a24f2fc08616dd2d6f01adc5f32c71b7fefeb/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f73727573682f4d696e69436861696e3f7374796c653d736f6369616c

[220] Griptape: https://github.com/griptape-ai/griptape

[221] llm-chain: https://github.com/sobelio/llm-chain

[222] PromptFlow: https://github.com/InsuranceToolkits/promptflow

[223] OpenLM: https://github.com/r2d4/openlm

[224] Typescript: https://github.com/r2d4/llm.ts

[225] Dust: https://github.com/dust-tt/dust

[226] e2b: https://github.com/e2b-dev/e2b

[227] SuperAGI: https://github.com/TransformerOptimus/SuperAGI

[228] SmartGPT: https://github.com/Cormanz/smartgpt

[229] TermGPT: https://github.com/Sentdex/TermGPT

[230] ReLLM: https://github.com/r2d4/rellm

[231] OpenDAN: https://github.com/fiatrete/OpenDAN-Personal-AI-OS

[232] : https://camo.githubusercontent.com/afcc4d7e87cabdcc988168bd918c609632c45ec90121099420bfb19892450694/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f66696174726574652f4f70656e44414e2d506572736f6e616c2d41492d4f533f7374796c653d736f6369616c

[233] OpenLLM: https://github.com/bentoml/OpenLLM

[234] : https://camo.githubusercontent.com/ea5b02d2a4c9f78fb7793d1fd5dab1ad8b55341e65fb01226922f3afb224bd2c/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f62656e746f6d6c2f4f70656e4c4c4d3f7374796c653d736f6369616c

[235] FlagAI: https://github.com/FlagAI-Open/FlagAI

[236] : https://camo.githubusercontent.com/2de03fb8bbf1a5af960dc0dc6d8e0a8954b86518ab9738d4cf8d3c094c9b061f/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f466c616741492d4f70656e2f466c616741493f7374796c653d736f6369616c

[237] AI.JSX: https://github.com/fixie-ai/ai-jsx

[238] : https://camo.githubusercontent.com/d0fcaac43ed954efeadcbac6042d007c90c1bd441bfb38aa6ba26d49e6b9b796/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f66697869652d61692f61692d6a73783f7374796c653d736f6369616c

[239] Outlines: https://github.com/normal-computing/outlines

[240] : https://camo.githubusercontent.com/ea01f574ac090c46980761f39888f9b204bdf38e859d3a9746f4fd3ac54713e3/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6e6f726d616c2d636f6d707574696e672f6f75746c696e65733f7374796c653d736f6369616c

[241] AI Utils: https://github.com/lgrammel/ai-utils.js

[242] : https://camo.githubusercontent.com/ff8645029b522692ef592df33b67aa2d5865c5c071367895b4f31001d793c542/68747470733a2f2f696d672e736869656c64732e696f2f6769746875622f73746172732f6c6772616d6d656c2f61692d7574696c732e6a733f7374796c653d736f6369616c

[243] MetaGPT: https://github.com/geekan/MetaGPT

[244] Hyv: https://github.com/failfa-st/hyv

[245] Autochain: https://github.com/Forethought-Technologies/AutoChain

[246] TypeChat: https://github.com/microsoft/TypeChat

[247] Marvin: https://github.com/PrefectHQ/marvin

[248] LMQL: https://github.com/eth-sri/lmql

[249] LLMFlow: https://github.com/stoyan-stoyanov/llmflows

[250] Ax: https://github.com/axilla-io/ax

[251] : https://github.com/kyrolabs/awesome-langchain/blob/main/README.md#complement-to-this-list

[252] 开源LLM清单: https://github.com/eugeneyan/open-llms

[253] Awesome LLM: https://github.com/Hannibal046/Awesome-LLM

[254] LLaMA Cult and More: https://github.com/shm007g/LLaMA-Cult-and-More

0
0
0
0
关于作者
关于作者

文章

0

获赞

0

收藏

0

相关资源
云原生数据库 veDB 核心技术剖析与展望
veDB 是一款分布式数据库,采用了云原生计算存储分离架构。本次演讲将为大家介绍火山引擎这款云原生数据库的核心技术原理,并对未来进行展望。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论