Ubuntu 20.04 系统安装Docker及nvidia-docker2

技术

安装Docker

卸载之前的Docker环境

如果之前已经安装了老版本Docker,那么在安装新版本Docker之前需要将其先卸载。


        
          
sudo apt-get remove docker docker-engine docker.io containerd runc  

      

需要注意的是,用这种方法不能把之前存在的镜像、容器及其他数据清理。如果想完全清理掉之前的数据,可以执行下面的几行命令:


        
          
sudo apt-get purge docker-ce docker-ce-cli containerd.io docker-compose-plugin  
  
sudo rm -rf /var/lib/docker  
  
sudo rm -rf /var/lib/containerd  

      

安装Docker

  1. 配置apt仓库

        
          
sudo apt-get update  
  
sudo apt-get install ca-certificates curl gnupg lsb-release  
  
sudo mkdir -p /etc/apt/keyrings  
  
curl -fsSL https://download.docker.com/linux/ubuntu/gpg | sudo gpg --dearmor -o /etc/apt/keyrings/docker.gpg  
  
echo \  
  "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/docker.gpg] https://download.docker.com/linux/ubuntu \  
  $(lsb\_release -cs) stable" | sudo tee /etc/apt/sources.list.d/docker.list > /dev/null  

      
  1. 安装最新版本Docker

        
          
sudo apt-get update  
  
sudo apt-get install docker-ce docker-ce-cli containerd.io docker-compose-plugin  

      
  1. 验证Docker环境是否安装成功

        
          
sudo docker run hello-world  

      

如果显示以下信息,则表示安装成功:


        
          
Unable to find image 'hello-world:latest' locally  
latest: Pulling from library/hello-world  
2db29710123e: Pull complete   
Digest: sha256:94ebc7edf3401f299cd3376a1669bc0a49aef92d6d2669005f9bc5ef028dc333  
Status: Downloaded newer image for hello-world:latest  
  
Hello from Docker!  
This message shows that your installation appears to be working correctly.  
  
To generate this message, Docker took the following steps:  
 1. The Docker client contacted the Docker daemon.  
 2. The Docker daemon pulled the "hello-world" image from the Docker Hub.  
    (amd64)  
 3. The Docker daemon created a new container from that image which runs the  
    executable that produces the output you are currently reading.  
 4. The Docker daemon streamed that output to the Docker client, which sent it  
    to your terminal.  
  
To try something more ambitious, you can run an Ubuntu container with:  
 $ docker run -it ubuntu bash  
  
Share images, automate workflows, and more with a free Docker ID:  
 https://hub.docker.com/  
  
For more examples and ideas, visit:  
 https://docs.docker.com/get-started/  

      

安装nvidia-docker2

安装Docker环境

如果还没有安装Docker环境,那么需要先安装一下,可以使用下面的命名通过官方的便捷脚本进行安装,也可以通过上文的方法用apt命令安装。


        
          
curl https://get.docker.com | sh \  
  && sudo systemctl --now enable docker  

      

安装nvidia-docker2

  1. 配置apt仓库

        
          
distribution=$(. /etc/os-release;echo $ID$VERSION_ID) \  
      && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | sudo gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \  
      && curl -s -L https://nvidia.github.io/libnvidia-container/$distribution/libnvidia-container.list | \  
            sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \  
            sudo tee /etc/apt/sources.list.d/nvidia-container-toolkit.list  

      
  1. 安装nvidia-docker2

        
          
sudo apt-get update  
  
sudo apt-get install -y nvidia-docker2  

      

安装完成后需要重启Docker:


        
          
sudo systemctl restart docker  

      
  1. 验证是否安装成功

        
          
sudo docker run --rm --gpus all nvidia/cuda:11.6.2-base-ubuntu20.04 nvidia-smi  

      

执行上面的命令,如果显示跟下面类似的内容,说明nvidia-docker2已经安装成功。


        
          
Fri Jan  6 01:20:11 2023         
+-----------------------------------------------------------------------------+  
| NVIDIA-SMI 470.129.06   Driver Version: 470.129.06   CUDA Version: 11.6     |  
|-------------------------------+----------------------+----------------------+  
| GPU  Name        Persistence-M| Bus-Id        Disp.A | Volatile Uncorr. ECC |  
| Fan  Temp  Perf  Pwr:Usage/Cap|         Memory-Usage | GPU-Util  Compute M. |  
|                               |                      |               MIG M. |  
|===============================+======================+======================|  
|   0  NVIDIA GeForce ...  Off  | 00000000:01:00.0 Off |                  N/A |  
| N/A   45C    P8     1W /  N/A |    376MiB /  3911MiB |     19%      Default |  
|                               |                      |                  N/A |  
+-------------------------------+----------------------+----------------------+  
                                                                                 
+-----------------------------------------------------------------------------+  
| Processes:                                                                  |  
|  GPU   GI   CI        PID   Type   Process name                  GPU Memory |  
|        ID   ID                                                   Usage      |  
|=============================================================================|  
+-----------------------------------------------------------------------------+  

      
0
0
0
0
相关资源
高性能存储虚拟化方案 NVMe over Fabric 在火山引擎的演进
在云计算中,虚拟化存储扮演着重要角色,其中 iSCSI 协议在业界开放、流行多年。近年来,拥有更优性能的 NVMe over Fabrics 协议也得到了发展。本次分享介绍了 NVMe over Fabrics 在云原生和虚拟化方向的演进工作和成果。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论