目标检测使用的数据增强方法汇总

技术

picture.image

向AI转型的程序员都关注了这个号👇👇👇

. Mosaic数据增强

这个部分之前已经介绍过了,不过值得一提的是,这里yolov5还额外提出了一个9图的mosaic操作,就是把之前的4个图像换成了9张图像,拼接在一起处理,图像更大了而且label也更多,训练一张这样的拼接图像等同与训练了9张小图。

  • 操作示例

picture.image

  1. Copy paste数据增强 =================

中文名叫复制粘贴大法,将部分目标随机的粘贴到图片中,前提是数据要有segments数据才行,即每个目标的实例分割信息。下面是Copy paste原论文中的示意图。

  • 操作示例

picture.image

  1. Random affine仿射变换 ====================

yolov5的仿射变换包含随机旋转、平移、缩放、错切操作,和yolov3-spp一样,代码都没有改变。据配置文件里的超参数发现只使用了Scale和Translation即缩放和平移。

picture.image

  1. MixUp数据增强 ============

这个比较熟悉了,就是调整透明度两张图像叠加在一起。代码中只有较大的模型才使用到了MixUp,而且每次只有10%的概率会使用到。

  • 操作示例

picture.image

  1. HSV随机增强图像 ============

随机增强图像HSV在 数据增强 | 旋转、平移、缩放、错切、HSV增强 这篇文章中也有介绍到。不过在yolov5中,这里默认是注释掉不使用的。

  • 操作示例

picture.image

  1. 随机水平翻转 =========

这个就是如字面意思,随机上下左右的水平翻转

  • 操作示例

picture.image

  1. Cutout数据增强

Cutout是一种新的正则化方法。训练时随机把图片的一部分减掉,这样能提高模型的鲁棒性。它的来源是计算机视觉任务中经常遇到的物体遮挡问题。通过cutout生成一些类似被遮挡的物体,不仅可以让模型在遇到遮挡问题时表现更好,还能让模型在做决定时更多地考虑环境。

Cutout数据增强在之前也见过很多次了。在yolov5的代码中默认也是不启用的。

picture.image

  1. Albumentations数据增强工具包

Albumentations 数据增强工具包在之前已经介绍过,见:Yolo系列 | Yolov4v5的模型结构与正负样本匹配

github地址:https://github.com/albumentations-team/albumentations

docs使用文档:https://albumentations.ai/docs

其涵盖了绝大部分的数据增强方式,如下:

picture.image

picture.image

原文地址

https://blog.csdn.net/weixin\_44751294/article/details/126211751


机器学习算法AI大数据技术

搜索公众号添加: datanlp

picture.image

长按图片,识别二维码


阅读过本文的人还看了以下文章:

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

搜索公众号添加: datayx

picture.image

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
亿万用户下高可用融合直播的应用实践
直播融合 CDN 调度系统承担了公司内所有直播流量的接入工作,对高并发高带宽场景支持友好,有完善的体系进行容灾降级、质量优化、成本优化。本次演讲将带大家了解直播融合 CDN 调度系统的整体架构及在抖音上的应用。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论