文本相似度,文本匹配模型归纳(附代码)

技术

picture.image

向AI转型的程序员都关注了这个号 👇👇👇

人工智能大数据与深度学习 公众号:datayx

本文将会整合近几年来比较热门的一些文本匹配模型,并以 QA_corpus为测试基准,分别进行测试,代码均采用tensorflow进行实现,每个模型均会有理论讲解与代码实现。

项目代码与论文讲解都在持续更新中

DSSM详解

https://blog.csdn.net/u012526436/article/details/90212287

ESIM详解

https://blog.csdn.net/u012526436/article/details/90380840

ABCNN详解

https://blog.csdn.net/u012526436/article/details/90179481

BiMPM详解

https://blog.csdn.net/u012526436/article/details/88663975

DIIN详解

https://blog.csdn.net/u012526436/article/details/90710925

DRCN详解

https://blog.csdn.net/u012526436/article/details/90757018

picture.image

数据集为QA_corpus,训练数据10w条,验证集和测试集均为1w条

其中对应模型文件夹下的 args.py文件是超参数

训练: python train.py

测试: python test.py

词向量:不同的模型输入不一样,有的模型的输入只有简单的字向量,有的模型换成了字向量+词向量,甚至还有静态词向量(训练过程中不进行更新)和 动态词向量(训练过程中更新词向量),所有不同形式的输入均以封装好,调用方法如下

静态词向量,请执行 python word2vec_gensim.py,该版本是采用gensim来训练词向量

动态词向量,请执行 python word2vec.py,该版本是采用tensorflow来训练词向量,训练完成后会保存embedding矩阵、词典和词向量在二维矩阵的相对位置的图片, 如果非win10环境,由于字体的原因图片可能保存失败

测试集结果对比:

picture.image


阅读过本文的人还看了以下文章:

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

搜索公众号添加: datayx

picture.image


机大数据技术与机器学习工程

搜索公众号添加: datanlp

picture.image

长按图片,识别二维码

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
字节跳动基于 DataLeap 的 DataOps 实践
随着数字化转型的推进以及业务数仓建设不断完善,大数据开发体量及复杂性逐步上升,如何保证数据稳定、正确、持续产出成为数据开发者核心诉求,也成为平台建设面临的挑战之一。本次分享主要介绍字节对于DataOps的理解 以及 DataOps在内部业务如何落地实践。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论