向AI转型的程序员都关注了这个号👇👇👇
Zero-Shot Information Extraction via Chatting with ChatGPT
paper:https://arxiv.org/abs/2302.10205
利用ChatGPT实现零样本信息抽取(Information Extraction,IE),看到零样本就能大概明白这篇文章将以ChatGPT作为一个基座然后补全前后端,来实现抽取任务。主要针对抽取中的三个重要任务:
对于句子:《我的爱情日记》是1990年在北京上映的中国…
实体关系三元组抽取任务,如(我的爱情日记,上映日期,1990年)
命名实体识别任务,如人物的实体有(吴天戈,…)
事件抽取任务,如事件是(产品行为-上映)
ChatIE如下图所示,
具体来说,ChatIE实现零样本的策略是将其任务转化为具有多轮提问-回答问题,主要分为两个阶段:
第一阶段,找出句子中可能存在的相应元素类型(对应三个任务分别为实体、关系或事件),通过这种方式可以提前过滤到不需要的信息,以减少搜索和计算复杂度。
如上图中的上半部分,输入给chatGPT的信息为:“给定的句子为:sentence。给定实体/关系/事件类型列表:[…]。在这个句子中,可能包含了哪些实体/关系/事件类型”,然后得到一些关于人物/地点的实体,上映时间/导演等关系,上映等具体事件。
第二阶段,对第一阶段识别出的每个元素按照任务执行相应的信息抽取。由于有些问题比较复杂,所以作者们设计了问题模板链,即某个元素的抽取可能取决于前一些元素的抽取。
如上图中的下半部分,分不同的子任务处理方法不同。
代码已经开源,包含了详细的前后端处理。
机器学习算法AI大数据技术
搜索公众号添加: datanlp
长按图片,识别二维码
阅读过本文的人还看了以下文章:
基于40万表格数据集TableBank,用MaskRCNN做表格检测
《深度学习入门:基于Python的理论与实现》高清中文PDF+源码
2019最新《PyTorch自然语言处理》英、中文版PDF+源码
《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码
PyTorch深度学习快速实战入门《pytorch-handbook》
【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》
李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材
【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类
如何利用全新的决策树集成级联结构gcForest做特征工程并打分?
Machine Learning Yearning 中文翻译稿
斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)
中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程
不断更新资源
深度学习、机器学习、数据分析、python
搜索公众号添加: datayx