基于40万表格数据集TableBank,用MaskRCNN做表格检测

技术

picture.image

向AI转型的程序员都关注了这个号 👇👇👇

机器学习AI算法工程 公众号:datayx

TableBank:高质量的标注表格数据集

虽然人类在视觉上可以很容易地判断出一个表格,但由于表格的布局、样式多种多样,对于机器而言判断“何为表格”以及表格中内容之间的关系却并不容易。传统的基于规则的表格识别方式,一旦换一份文档就需要大量在文档后台的手工操作;而现有的机器学习方法,又无法获得大量有效的标注数据,很难支持实际场景中的应用。于是,TableBank应运而生。

TableBank是一个表格检测与识别的数据集,基于公开的、大规模的Word文档和LaTex文档,通过弱监督方法创建而来。与传统的弱监督训练集不同,TableBank不仅数据质量高,而且数据规模比之前的人工标记的表格分析数据集大几个数量级,其表格数据量达到了41.7万。

然而要让机器读懂表格,首先要能够从文档中识别哪些是表格,随后再去识别表格区域内的信息。

MaskRCNN基于40万表格数据集TableBank训练微调

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
抖音连麦音画质体验提升与进阶实践
随着互娱场景实时互动创新玩法层出不穷,业务伙伴对 RTC「体验」和「稳定」的要求越来越高。火山引擎 RTC 经历了抖音 6 亿 DAU 的严苛验证和打磨,在架构设计、音画质提升、高可靠服务等方面沉淀了丰富的经验,本次演讲将和大家分享火山引擎 RTC 在直播连麦等场景中的技术优化及其带来的新玩法。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论