FaceFusion:探索无限创意,创造独一无二的面孔融合艺术!

技术
FaceFusion:探索无限创意,创造独一无二的面孔融合艺术!

它使用先进的图像处理技术,允许用户将不同的面部特征融合在一起,创造有趣和令人印象深刻的效果。这个项目的潜在应用包括娱乐、虚拟化妆和艺术创作,为用户提供了创造性的工具

1.效果预览

picture.image

2.安装

请注意,安装需要技术技能,不适合初学者。请不要在GitHub上打开平台和安装相关问题。我们有一个非常有用的Discord社区,将指导您安装FaceFusion。

Read the installation now.

2.1 使用指南

Run the command:


        
          
python run.py [options]  
  
options:  
  -h, --help                                                                                       show this help message and exit  
  -s SOURCE_PATH, --source SOURCE_PATH                                                             select a source image  
  -t TARGET_PATH, --target TARGET_PATH                                                             select a target image or video  
  -o OUTPUT_PATH, --output OUTPUT_PATH                                                             specify the output file or directory  
  -v, --version                                                                                    show program's version number and exit  
  
misc:  
  --skip-download                                                                                  omit automate downloads and lookups  
  --headless                                                                                       run the program in headless mode  
  
execution:  
  --execution-providers {cpu} [{cpu} ...]                                                          choose from the available execution providers (choices: cpu, ...)  
  --execution-thread-count EXECUTION_THREAD_COUNT                                                  specify the number of execution threads  
  --execution-queue-count EXECUTION_QUEUE_COUNT                                                    specify the number of execution queries  
  --max-memory MAX_MEMORY                                                                          specify the maximum amount of ram to be used (in gb)  
  
face recognition:  
  --face-recognition {reference,many}                                                              specify the method for face recognition  
  --face-analyser-direction {left-right,right-left,top-bottom,bottom-top,small-large,large-small}  specify the direction used for face analysis  
  --face-analyser-age {child,teen,adult,senior}                                                    specify the age used for face analysis  
  --face-analyser-gender {male,female}                                                             specify the gender used for face analysis  
  --reference-face-position REFERENCE_FACE_POSITION                                                specify the position of the reference face  
  --reference-face-distance REFERENCE_FACE_DISTANCE                                                specify the distance between the reference face and the target face  
  --reference-frame-number REFERENCE_FRAME_NUMBER                                                  specify the number of the reference frame  
  
frame extraction:  
  --trim-frame-start TRIM_FRAME_START                                                              specify the start frame for extraction  
  --trim-frame-end TRIM_FRAME_END                                                                  specify the end frame for extraction  
  --temp-frame-format {jpg,png}                                                                    specify the image format used for frame extraction  
  --temp-frame-quality [0-100]                                                                     specify the image quality used for frame extraction  
  --keep-temp                                                                                      retain temporary frames after processing  
  
output creation:  
  --output-image-quality [0-100]                                                                   specify the quality used for the output image  
  --output-video-encoder {libx264,libx265,libvpx-vp9,h264_nvenc,hevc_nvenc}                        specify the encoder used for the output video  
  --output-video-quality [0-100]                                                                   specify the quality used for the output video  
  --keep-fps                                                                                       preserve the frames per second (fps) of the target  
  --skip-audio                                                                                     omit audio from the target  
  
frame processors:  
  --frame-processors FRAME_PROCESSORS [FRAME_PROCESSORS ...]                                       choose from the available frame processors (choices: face_enhancer, face_swapper, frame_enhancer, ...)  
  --face-enhancer-model {codeformer,gfpgan_1.2,gfpgan_1.3,gfpgan_1.4,gpen_bfr_512}                 choose from the mode for the frame processor  
  --face-enhancer-blend [0-100]                                                                    specify the blend factor for the frame processor  
  --face-swapper-model {inswapper_128,inswapper_128_fp16}                                          choose from the mode for the frame processor  
  --frame-enhancer-model {realesrgan_x2plus,realesrgan_x4plus,realesrnet_x4plus}                   choose from the mode for the frame processor  
  --frame-enhancer-blend [0-100]                                                                   specify the blend factor for the frame processor  
  
uis:  
  --ui-layouts UI_LAYOUTS [UI_LAYOUTS ...]                                                         choose from the available ui layouts (choices: benchmark, webcam, default, ...)  

      
2.相关文档

Read the documentation for a deep dive.

项目链接内容资料见:https://blog.csdn.net/sinat\_39620217/article/details/133751930

更多优质内容请关注公号:汀丶人工智能;会提供一些相关的资源和优质文章,免费获取阅读。

优质书籍推荐:

0
0
0
0
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论