KDD 2023 推荐系统论文汇总

技术

picture.image

关注我们,一起学习

KDD 2023的论文接受列表已出,这里给大家整理了推荐系统相关的文章,包含的类别有很多,包括对话推荐,用户隐私,公平性,纠偏,如何将语言模型用于推荐,多场景推荐等等。

地址:https://kdd.org/kdd2023/research-track-papers/

https://kdd.org/kdd2023/ads-track-papers/

其中也不乏我们之前已经阅读的文章,感兴趣的同学可以康康:

KDD'23 谷歌 | CDN:交叉解耦网络来应对长尾分布的item推荐

KDD'23「Amazon」Text Is All You Need:通过学习语言表征来用于序列推荐

Improving Conversational Recommendation Systems via Counterfactual Data Simulation【人大,华为】
LATTE: A Framework for Learning Item-Features to Make a Domain-Expert for Effective Conversational Recommendation【汉阳,KT】
Delving into Global Dialogue Structures: Structure Planning Augmented Response Selection for Multi-turn Conversations【人大】
User-Regulation Deconfounded Conversational Recommender System with Bandit Feedback【纽约大学,adobe】
Path-Specific Counterfactual Fairness for Recommender Systems【弗吉尼亚大学,领英】
Meta Multi-agent Exercise Recommendation: A Game Application Perspective【合肥大学】
Shilling Black-box Review-based Recommender Systems through Fake Review Generation【清华】
Privacy Matters: Vertical Federated Linear Contextual Bandits for Privacy Protected Recommendation【剑桥,港大,腾讯】
Generative Flow Network for Listwise Recommendation【快手】
PSLOG: Pretraining with Search Logs for Document Ranking【人大】
Text Is All You Need: Learning Language Representations for Sequential Recommendation【亚马逊】
MAP: A Model-agnostic Pretraining Framework for Click-through Rate Prediction【交大,华为】
Cognitive Evolutionary Search to Select Feature Interactions for Click-Through Rate Prediction【中科大】
PrefRec: Recommender Systems with Human Preferences for Reinforcing Long-term User Engagement【南洋理工,快手】
Efficient Bi-Level Optimization for Recommendation Denoising【重大】
Adaptive Disentangled Transformer for Sequential Recommendation【清华】
Meta Graph Learning for Long-tail Recommendation【清华,阿里】
Graph Neural Bandits
E-commerce Search via Content Collaborative Graph Neural Network【厦大,阿里】
Criteria Tell You More than Ratings: Criteria Preference-Aware Light Graph Convolution for Effective Multi-Criteria Recommendation【延世大学】
Knowledge Graph Self-Supervised Rationalization for Recommendation【港大,腾讯】
On Manipulating Signals of User-Item Graph: A Jacobi Polynomial-based Graph Collaborative Filtering【北大,微软】
Impatient Bandits: Optimizing Recommendations for the Long-Term Without Delay【spotify】
Hierarchical Invariant Learning for Domain Generalization Recommendation【人大】
UCEpic: Unifying Aspect Planning and Lexical Constraints for Generating Explanations in Recommendation【加州大学】
Debiasing Recommendation by Learning Identifiable Latent Confounders【港科大,字节】
Reconsidering Learning Objectives in Unbiased Recommendation: A Distribution Shift Perspective【浙大】
Who Should Be Given Incentives? Counterfactual Optimal Treatment Regimes Learning for Recommendation【北大】
Unbiased Delayed Feedback Label Correction for Conversion Rate Prediction【清华】
A Sublinear Time Algorithm for Opinion Optimization in Directed Social Networks via Edge Recommendation【复旦】
Contrastive Learning for User Sequence Representation in Personalized Product Search【人大】
A Collaborative Transfer Learning Framework for Cross-domain Recommendation【美团】
Building Self-Adaptive Recommendation Models via Responsive Error Compensation Loop【华为,交大】
UA-FedRec: Untargeted Attack on Federated News Recommendation【中科大,微软】
PrivateRec: Differentially Private Model Training and Online Serving for Federated News Recommendation【人大】
Doctor Specific Tag Recommendation for Online Medical Record Management【香港城市大学】
Hierarchical Projection Enhanced Multi-behavior Recommendation【清华,华为】
Improving Training Stability for Multitask Ranking Models in Recommender Systems【谷歌】
AdaTT: Adaptive Task-to-Task Fusion Network for Multitask Learning in Recommendations【meta】
SAMD: An Industrial Framework for Heterogeneous Multi-Scenario Recommendation【蚂蚁】
TransAct: Transformer-based Realtime User Action Model for Recommendation at Pinterest【pinterest】
Controllable Multi-Objective Re-ranking with Policy Hypernetworks【阿里】
M5: Multi-Modal Multi-Interest Multi-Scenario Matching for Over-the-Top Recommendation【hulu】
CT4Rec: Simple yet Effective Consistency Training for Sequential Recommendation【腾讯,oppo】
Multi-channel Integrated Recommendation with Exposure Constraints【阿里】
Graph-Based Model-Agnostic Data Subsampling for Recommendation Systems【字节,apple】
On-device Integrated Re-ranking with Heterogeneous Behavior Modeling【交大,华为】
Variance Reduction Using In-Experiment Data: Efficient and Targeted Online Measurement for Sparse and Delayed Outcomes【airbnb】
Fresh Content Needs More Attention: Multi-funnel Fresh Content Recommendation【谷歌】
VRDU: A Benchmark for Visually-rich Document Understanding【谷歌】
PGLBox: Multi-GPU Graph Learning Framework for Web-Scale Recommendation【百度】
Counterfactual Video Recommendation for Duration Debiasing【清华】
Exploiting Intent Evolution in E-commercial Query Recommendation【亚马逊】
Workplace Recommendation with Temporal Network Objectives【微软,康奈尔】
A Lightweight, Efficient and Explainable-by-Design Convolutional Neural Network for Internet Traffic Classification【华为】
Modeling Dual Period-Varying Preferences for Takeaway Recommendation【国科大】
SentiGOLD: A Large Bangla Gold Standard Multi-Domain Sentiment Analysis Dataset and its Evaluation【giga】
Empowering Long-tail Item Recommendation through Cross Decoupling Network (CDN)【谷歌】
Stationary Algorithmic Balancing Over Dynamic Email Re-Ranking Problem【普渡大学,微软】
Revisiting Neural Retrieval on Accelerators【meta】
Contrastive Learning of Stress-specific Word Embedding for Social Media based Stress Detection【清华】
Adaptive Graph Contrastive Learning for Recommendation【港大】
BOSS: A Bilateral Occupational-Suitability-Aware Recommender System for Online Recruitment【boss直聘】
Tree based Progressive Regression Model for Watch-Time Prediction in Short-video Recommendation【快手】
PIER: Permutation-Level Interest-Based End-to-End Re-ranking Framework in E-commerce【美团】
Constrained Social Community Recommendation【港中文,腾讯】
Scenario-Adaptive Feature Interaction for Click-Through Rate Prediction【微信】
TWIN: TWo-stage Interest Network for Lifelong User Behavior Modeling in CTR Prediction at Kuaishou【快手】
BERT4CTR: An Efficient Framework to Combine Pre-trained Language Model with Non-textual Features for CTR Prediction【微软】
Capturing Conversion Rate Fluctuation during Sales Promotions: A Novel Historical Data Reuse Approach【阿里】
Unbiased Delayed Feedback Label Correction for Conversion Rate Prediction【清华,华为】

交流群:点击“联系 作者”--备注“研究方向-公司或学校”

欢迎|论文宣传|合作交流

往期推荐

CVPR2023 | CaFo:来自黑暗寒冬的随从们,仆人们,士兵们,听从克尔苏加德的召唤!

KDD'23 谷歌 | CDN:交叉解耦网络来应对长尾分布的item推荐

RecSys'23 清华,shopee | STAN:基于用户生命周期表征的阶段自适应多任务推荐方法

SIGIR'23 微信 | 预训练推荐方法中的后门攻击

长按关注,更多精彩

点个在看你最好看

picture.image

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
边缘云游戏行业解决方案
《“加速”游戏体验升级,火山引擎边缘云游戏行业解决方案》 许思安 | 火山引擎边缘云高级总监
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论