ICDE 2022 搜广推论文速览

技术

picture.image

关注我们,一起学习~

来源:ICDE官网

整理:公众号 | 秋枫学习笔记

转载请注明来源

picture.image

ICDE 2022的接收论文已经出了一部分了,华为、阿里、腾讯等大厂均有论文录用。笔者整理了搜广推相关的一些论文供大家食用,现在的还不是完整版,后续官网全部公布后,笔者会第一时间给大家更新,主要包括可解释推荐系统,图神经网络,对比学习等,由于这里的论文每一类中包含的论文相对较少,因此笔者没有对他们进行分类,可以直接看中文释义。

地址:https://icde2022.ieeecomputer.my/accepted-research-track/

Tower Bridge Net (TB-Net): Bidirectional Knowledge Graph Aware Embedding Propagation for Explainable Recommender Systems【塔桥网络 (TB-Net):可解释推荐系统的双向知识图谱感知】

Shendi Wang (Huawei Technologies)*; Haoyang Li (Huawei Technologies); Caleb Chen Cao (Huawei Technologies); Xiao-Hui Li (Huawei Technologies); Ngai Fai Ng (Huawei Technologies); Jianxin Liu (Huawei Technologies ); Xun Xue (Huawei); Hu Song (Industrial and Commercial Bank of China Limited); Jinyu Li (Industrial and Commercial Bank of China Limited ); Guangye Gu (Industrial and Commercial Bank of China Limited ); Lei Chen (Hong Kong University of Science and Technology)

ODNET: A Novel Personalized Origin-Destination Ranking Network For Flight Recommendation【ODNET:一种用于航班推荐的新型个性化起点-目的地排名网络】

Jia Xu (Guangxi University)*; Jin Huang (alibaba); Zulong Chen (Alibaba); LI Yang (Alibaba); Wanjie Tao (Alibaba Group); Chuanfei Xu (Concordia University)

AiRS: A Large-Scale Recommender System at NAVER News【AiRS:NAVER News 的大规模推荐系统】

Hongjun Lim (Naver corp); Yeon-Chang Lee (Hanyang University); Jin-Seo Lee (Naver Corp.); Sanggyu Han (Naver Corp.); Seunghyeon Kim (Naver Corp.); Yeongjong Jeong (Naver Corp.); Changbong Kim (Naver Corp.); Jaehun Kim (Naver Corp.); Sunghoon Han (Naver Corp.); Solbi Choi (Naver Corp.); Hanjong Ko (Naver Corp.); Dokyeong Lee (Naver Corp.); Jaeho Choi (Naver Corporation); Yungi Kim (Hanyang University); Hong-Kyun Bae (Hanyang University); Taeho Kim (Hanyang University); Jeewon Ahn (Hanyang University); Hyun-Soung You (Hanyang University); Sang-Wook Kim (Hanyang University, Korea)*

PICASSO: Unleashing the Potential of GPU-centric Training for Wide-and-deep Recommender Systems【PICASSO:为广泛而深入的推荐系统释放以 GPU 为中心的训练潜力】

Yuanxing Zhang (Alibaba-Inc)*; Langshi Chen (Alibaba Group); Siran Yang (Alibaba Group); Man Yuan (Alibaba Group); Huimin Yi (Alibaba Group); Jie Zhang (Alibaba Group); Jiamang Wang (Alibaba); Jianbo Dong (Alibaba); Yunlong Xu (Alibaba Group); Yue Song (Alibaba Group); Yong Li (Alibaba Group); Di Zhang (Alibaba Group); Wei Lin (Alibaba Group); Lin Qu (Alibaba Group); Bo Zheng (Alibaba Group)

Field-aware Variational Autoencoders for Billion-scale User Representation Learning【用于十亿规模用户表征学习的场感知变分自动编码器】

Ge Fan (Tencent)*; Chaoyun Zhang (Tencent Lightspeed & Quantum Studios); Junyang Chen (Shenzhen Univeristy); Baopu Li (BAIDU USA LLC); Zenglin Xu (Harbin Institute of Technology); YINGJIE LI (Tencent Lightspeed & Quantum Studios); Luyu Peng (Tencent); Zhiguo Gong (University of Macau)

AMCAD: Adaptive Mixed-Curvature Representation based Advertisement Retrieval System【AMCAD:基于自适应混合曲率表征的广告检索系统】

Zhirong Xu (Alibaba Group); Shiyang Wen (Alibaba Group)*; Junshan Wang (Alibaba); Guojun Liu (Alibaba Group); Liang Wang (Alibaba group); Zhi Yang (Peking University); Lei Ding (Alibaba Group ); Yan Zhang (Alibaba group); Di Zhang (Alibaba Group); Jian Xu (Alibaba Group); Bo Zheng (Alibaba Group)

Cheaper Is Better: Exploring Price Competitiveness for Online Purchase Prediction【越便宜越好:探索在线购买预测的价格竞争力】

Han Wu (alibaba Group); Hongzhe Zhang (Institute for Financial Services Analytics, University of Delaware)*; Liangyue Li (Alibaba Group); Zulong Chen (Alibaba); Fanwei Zhu (Zhejiang Univ. City College); Xiao Fang (Lerner College of Business and Economics, University of Delaware)

Subspace Embedding Based New Paper Recommendation【基于子空间嵌入的新论文推荐】

Yi Xie (Shandong University)*; Wen Li (Shandong University); Yuqing Sun (Shandong University); Elisa Bertino (Purdue University)

O2-SiteRec: Store Site Recommendation under the O2O Model via Multi-graph Attention Networks【O2-SiteRec:通过多图注意力网络在 O2O 模型下存储站点推荐】

Hua Yan (Southeast University)*; Shuai Wang (Southeast University); Yu Yang (Lehigh University); Baoshen Guo (Southeast University); Tian He (Southeast University); Desheng Zhang (Rutgers University)

Contrastive Learning for Sequential Recommendation【序列推荐中的对比学习】

Xu Xie (Peking University)*; Fei Sun (Alibaba Group); Zhaoyang Liu (Alibaba Group); Shiwen Wu (Peking University); Jinyang Gao (Alibaba Group); Jiandong Zhang (Alibaba Group); Bolin Ding (Data Analytics and Intelligence Lab, Alibaba Group); Bin Cui (Peking University)

Time-sensitive POI Recommendation by Tensor Completion with Side Information【时间敏感的 POI 推荐】

Bo Hui (Auburn University)*; Da Yan (University of Alabama at Birmingham); Haiquan Chen (California State University, Sacramento); Wei-Shinn Ku (Auburn University)

MISS: Multi-Interest Self-Supervised Learning Framework for Click-Through Rate Prediction【MISS:用于点击率预测的多兴趣自监督学习框架】

Wei Guo (Huawei Noah's Ark Lab)*; Can Zhang (National University of Singapore); Zhicheng He (Huawei Noah's Ark Lab); Jiarui Qin (Shanghai Jiao Tong University); Huifeng Guo (Huawei Noah's Ark Lab); Bo Chen (Huawei Noah’s Ark Lab); Ruiming Tang (Huawei Noah's Ark Lab); Xiuqiang He (Huawei Noah's Ark Lab); Rui Zhang (ruizhang.info)

Enhancing Recommendation with Automated Tag Taxonomy Construction in Hyperbolic Space【在双曲空间中通过自动标签分类构建增强推荐】

Yanchao Tan (Zhejiang University)*; Carl Yang (Emory University); Xiangyu Wei (Zhejiang University); Chaochao Chen (Zhejiang University); longfei li (Ant Financial Services Group); Xiaolin Zheng (Zhejiang University)

Inhomogeneous Social Recommendation with Hypergraph Convolutional Networks【具有超图卷积网络的非同质社交推荐】

Zirui Zhu (Tsinghua University); Chen Gao (Tsinghua University)*; Xu Chen (Renmin University of China); Nian Li (Tsinghua University); Depeng Jin (Tsinghua University); Yong Li (Tsinghua University)

Diverse Preference Augmentation with Multiple Domains for Cold-start Recommendations【针对冷启动建议的多域多样化偏好增强】

Yan Zhang (University of Electronic Science and Technology of China)*; Changyu Li (University of Electronic Science and Technology of China); Ivor Tsang (University of Technology Sydney); Hui Xu (University of Electronic Science and Technology of China); Lixin Duan (University of Electronic Science and Technology of China); Hongzhi Yin (The University of Queensland); Wen Li (University of Electronic Science and Technology of China); Jie Shao (University of Electronic Science and Technology of China)

Cross-Domain Recommendation to Cold-Start Users via Variational Information Bottleneck【通过变分信息瓶颈对冷启动用户的跨域推荐】

Jiangxia Cao (Institute of Information Engineering, Chinese Academy of Sciences)*; Jiawei Sheng (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China); Xin Cong (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China); Tingwen Liu (Institute of Information Engineering, CAS); Bin Wang (Xiaomi AI Lab)

Spatial-Temporal Interval Aware Sequential POI Recommendation【时空区间感知顺序 POI 推荐】

En Wang (Jilin University); Yiheng jiang (Jilin University); Yuanbo Xu (Jilin University)*; Liang Wang (Northwestern Polytechnical University); Yongjian Yang (Jilin University)

Self-Supervised Dual-Channel Attentive Network for Session-based Social Recommendation【基于会话的社交推荐的自监督双通道注意力网络】

Liuyin Wang (Tsinghua University)*; Xianghong Xu (Tsinghua Shenzhen International Graduate School, Tsinghua University); Kai Ouyang (Tsinghua University); Hai-Tao Zheng (Tsinghua University); Huanzhong Duan (WeChat Search Application Department, Tencent); Yanxiong Lu (WeChat Search Application Department, Tencent)

Micro-Behavior Encoding for Session-based Recommendation【基于会话推荐的微行为编码】

Jiahao Yuan (East China Normal University)*; Wendi Ji (East China Normal University); Dell Zhang (Blue Prism); Jinwei Pan (East China Normal University); Xiaoling Wang (East China Normal University)

Memorize, factorize, or be naive: Learning optimal feature interaction methods for CTR Prediction【记忆、分解或幼稚:学习 CTR 预测的最佳特征交互方法】

Fuyuan Lyu (McGill University); Xing Tang (Huawei Noah's Ark Lab); Huifeng Guo (Huawei Noah's Ark Lab); Ruiming Tang (Huawei Noah's Ark Lab)*; Xiuqiang He (Huawei Noah's Ark Lab); Rui Zhang (ruizhang.info); Xue Liu (McGill University)

Attentive Knowledge-aware Graph Convolutional Networks with Collaborative Guidance for Personalized Recommendation【知识感知图卷积网络进行个性化推荐】

Yankai Chen (The Chinese University of Hong Kong)*; Yaming Yang (MSRA); Yujing Wang (MSRA); Jing Bai (Microsoft); Xiangchen Song (Carnegie Mellon University); Irwin King (The Chinese University of Hong Kong)

FedRecAttack: Model Poisoning Attack to Federated Recommendation【FedRecAttack:对联邦推荐的模型中毒攻击】

Dazhong Rong (Zhejiang University); Shuai Ye (Zhejiang University); Ruoyan Zhao (Zhejiang University); HonNing Yuen (Zhejiang University); Qinming He (Zhejiang University)*; Jianhai Chen (Zhejiang University)

交流群:点击“联系作者”--备注“研究方向-公司或学校”

欢迎|论文宣传|合作交流

往期推荐

[picture.image

推荐系统中的动态权重设计](https://mp.weixin.qq.com/s?__biz=MzkxNjI4MDkzOQ==&mid=2247491178&idx=1&sn=2fd852ada07156df829e8ff928c9e70d&chksm=c1531d6ef624947846bda9f0a58d75bbb19cbf566f7a1d65e48dc5aa8bad65006c9f6a1eeaa1&scene=21#wechat_redirect)

[picture.image

SIGIR'22「腾讯」GMT:邻域感知的Masked Transformer进行点击率预测](https://mp.weixin.qq.com/s?__biz=MzkxNjI4MDkzOQ==&mid=2247491166&idx=1&sn=3d03647ac9f7dca65d6640a91590672c&chksm=c1531d5af624944c31013e95173393013e78ab836932a228995bad4891a4dc33aba57154b7db&scene=21#wechat_redirect)

[picture.image

SIGIR'22「微软」CTR估计:利用上下文信息促进特征表征学习](https://mp.weixin.qq.com/s?__biz=MzkxNjI4MDkzOQ==&mid=2247491140&idx=1&sn=aa1d90551737a997376e4d8bae40a523&chksm=c1531d40f624945662115766880f98e840038b1d5be5024236de4d0ae07e157ef99064eafc34&scene=21#wechat_redirect)

picture.image

长按关注,更多精彩

picture.image

picture.image

点个在看你最好看

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
IDC 大模型应用落地白皮书
大模型技术已深度融入业务实践,各企业期望其释放更大商业价值。 但大模型落地之路面临许多挑战和顾虑。 如何精准对接业务需求与发展蓝图,制定切实可行的大模型落地策略? IDC发布首个大模型应用策略与行动指南 一为您揭晓一
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论