关注我们,一起学习~
KDD 2022 搜广推论文他lei了,许多大厂和名校都有上榜,包括阿里,百度,美团,腾讯,谷歌,品趣等等,这里大致总结分类了一下,一些文章可能属于多个类别,但是归到了其中一类,大家可以根据关键词搜索。大致分了以下几类:图学习,因果推荐,去偏,强化学习等等,值得注意的是
因果推断和强化学习
的论文有所增加,这也说明这两个方向的方法在推荐系统有越来越多的落地和研究了,
图学习
依旧是热点。
官网地址:https://kdd.org/kdd2022/index.html
点击率CTR
Adversarial Gradient Driven Exploration for Deep Click-Through Rate Prediction【
深度点击率预测的对抗梯度驱动探索
】
Kailun Wu (Alibaba Group)*; Weijie Bian (Alibaba Group); Zhangming Chan (Alibaba Group); Lejian Ren (Alibaba Group); SHIMING XIANG (Chinese Academy of Sciences, China); Shu-Guang Han (Alibaba Group); Hongbo Deng (Alibaba Group); Bo Zheng (Alibaba Group)
A Generalized Doubly Robust Learning Framework for Debiasing Post-Click Conversion Rate Prediction【
用于去偏点击后转化率预测的广义双鲁棒学习框架
】
Quanyu Dai (Huawei Noah's Ark Lab)*; Peng Wu (Peking University); Haoxuan Li (Peking University); Zhenhua Dong (Huawei Noah's Ark Lab); Xiao-Hua Zhou (Peking University); Rui Zhang (ruizhang.info); Rui zhang (Huawei Technologies Co., Ltd.); Jie Sun (Theory Lab, Huawei Hong Kong Research Center)
EXTR: Click-Through Rate Prediction with Externalities in E-Commerce Sponsored Search【
EXTR:电子商务赞助搜索中具有外部性的点击率预测
】
Chi Chen (Alibaba)*; Hui Chen (Tsinghua University); Kangzhi Zhao (Alibaba Group); Junsheng Zhou (Alibaba Group); Li He (Alibaba Group); Hongbo Deng (Alibaba Group); Jian Xu (Alibaba Group); Bo Zheng (Alibaba Group); Yong Zhang (" Tsinghua University, China"); Chunxiao Xing (Tsinghua University)
Learning Supplementary NLP features for CTR Prediction in Sponsored Search【
为赞助搜索中的 CTR 预测学习补充 NLP 特征
】
Dong Wang (Microsoft)*; Shaoguang Yan (Microsoft); Yunqing Xia (Microsoft); Kave Salamatian (University of Savoie); Weiwei Deng (Microsoft); Qi Zhang (Microsoft )
Combo-Fashion: Fashion Clothes Matching CTR Prediction with Item History【
Combo-Fashion:时尚服装推荐
】
Chenxu Zhu (Shanghai Jiao Tong University)*; Peng Du (Alibaba); Weinan Zhang (Shanghai Jiao Tong University); Yong Yu (Shanghai Jiao Tong University); Yang Cao (Vision & Beauty Team, Alibaba Group)
图学习
Graph-Flashback Network for Next Location Recommendation【图学习,位置推荐】
Xuan Rao (University of Electronic Science and Technology of China)*; Lisi Chen (KAUST); Yong Liu (Nanyang Technological University); Shuo Shang (KAUST); Bin Yao (Shanghai Jiao Tong University); Peng Han (KAUST)
Learning Binarized Graph Representations with Multi-faceted Quantization Reinforcement for Top-K Recommendation【
Top-K推荐的多方面量化强化学习二值化图表征
】
Yankai Chen (The Chinese University of Hong Kong)*; Huifeng Guo (Huawei Noah's Ark Lab); Yingxue Zhang (Huawei Technologies Canada); Chen Ma (City University of Hong Kong); Ruiming Tang (Huawei Noah's Ark Lab); Jingjie Li (Huawei Noah's Ark Lab); Irwin King (The Chinese University of Hong Kong)
User-Event Graph Embedding Learning for Context-Aware Recommendation【上下文感知的图embedding学习】
Dugang Liu (Shenzhen University)*; Mingkai He (Shenzhen University); Jinwei Luo (Shenzhen University); Jiangxu Lin (Southeast University); Meng Wang (Southeast University); Xiaolian Zhang (Huawei 2012 lab); Weike Pan (Shenzhen University); Zhong Ming (Shenzhen University)
Multi-Behavior Hypergraph-Enhanced Transformer for Next-Item Recommendation【多行为超图Transformer进行推荐】
Yuhao Yang (Wuhan University); Chao Huang (University of Hong Kong)*; Lianghao Xia (South China University of Technology); Yuxuan Liang (National University of Singapore); Yanwei Yu (Ocean University of China); Chenliang Li (Wuhan University)
Self-Augmented Hypergraph Transformer for Recommender Systems【自增强超图Transformer】
Lianghao Xia (South China University of Technology); Chao Huang (University of Hong Kong)*; Chuxu Zhang (Brandeis University)
CoRGi: Content-Rich Graph Neural Networks with Attention【
CoRGi:具有注意力的内容丰富的图神经网络
】
Jooyeon Kim (RIKEN)*; Angus Lamb (Microsoft); Simon Woodhead (Eedi); Simon Pyton Jones (Microsoft); Cheng Zhang (Microsoft); Miltiadis Allamanis (MSR Cambridge)
Friend Recommendations with Self-Rescaling Graph Neural Networks【
缩放图神经网络的朋友推荐
】
Xiran Song (Huazhong University of Science and Technology); Jianxun Lian (MSRA); Hong Huang (Huazhong University of Science and Technology)*; Mingqi Wu (Microsoft Gaming, Redmond); Hai Jin (Huazhong University of Science and Technology); Xing Xie (Microsoft Research Asia)
因果推断
ASPIRE: Air Shipping Recommendation for E-commerce Products via Causal Inference Framework【
ASPIRE:通过因果推理框架为电子商务产品提供航空运输建议
】
Abhirup Mondal (Amazon)*; Anirban Majumder (Amazon); Vineet Chaoji (Amazon)
CausalInt: Causal Inspired Intervention for Multi-Domain Recommendation【
CausalInt:多领域推荐的因果启发式干预
】
Yichao Wang (Huawei Noah's Ark Lab)*; Huifeng Guo (Huawei Noah's Ark Lab); Bo Chen (Huawei Noah’s Ark Lab); Weiwen Liu (Huawei Noah's Ark Lab); Zhirong Liu (Huawei Noah's Ark Lab); Qi Zhang (Huawei Noah's Ark Lab); Zhicheng He (Huawei Noah's Ark Lab); Hongkun Zheng (Huawei Technologies Co Ltd); Weiwei Yao (Huawei); Muyu Zhang (Huawei); Zhenhua Dong (Huawei Noah's Ark Lab); Ruiming Tang (Huawei Noah's Ark Lab)
Practical Counterfactual Policy Learning for Top- Recommendations【
Top-K推荐的反事实策略学习
】
Yaxu Liu (National Taiwan University)*; Jui-Nan Yen (National Taiwan University); Bowen Yuan (National Taiwan University); Rundong Shi (Meituan); Peng Yan (Meituan); Chih-Jen Lin (National Taiwan University)
Addressing Unmeasured Confounder for Recommendation with Sensitivity Analysis【推荐系统中的混杂因子分析】
Sihao Ding (University of Science and Technology of China)*; Peng Wu (Peking University); Fuli Feng (University of Science and Technology of China); Yitong Wang (University of Science and Technology of China); Xiangnan He (University of Science and Technology of China); Yong Liao (University of Sciences and Technology of China); Yongdong Zhang (University of Science and Technology of China)
Deconfounding Duration Bias in Watch-time Prediction for Video Recommendation【
视频推荐观看时间预测中的去混杂持续时间偏差
】
Ruohan Zhan (Stanford University)*; Changhua Pei (Alibaba Group); Qiang Su (Kuaishou Technology); Jianfeng WEN (Kuaishou Inc.); Xueliang Wang (University of Science and Technology of China); Guanyu Mu (Kuaishou Inc.); Dong Zheng (Kuaishou Technology); Peng Jiang (Kuaishou Inc.); Kun Gai (AI)
去偏
Debiasing Learning for Membership Inference Attacks Against Recommender Systems【
针对推荐系统的成员推理攻击的去偏学习
】
Zihan Wang (Shandong University)*; Na Huang (Shandong University); Fei Sun (Alibaba Group); Pengjie Ren (Shandong University); Zhumin Chen (Shandong University); Hengliang Luo (Meituan); Maarten de Rijke (University of Amsterdam); Zhaochun Ren (Shandong University)
Debiasing the Cloze Task in Sequential Recommendation with Bidirectional Transformers【使用双向Transformer在序列推荐中纠偏】
Khalil Damak (University of Louisville)*; Sami Khenissi (University of Louisville); Olfa Nasraoui (university of Louisville)
Invariant Preference Learning for General Debiasing in Recommendation【纠偏】
Zimu Wang (Tsinghua University)*; Yue He (Tsinghua University); Jiashuo Liu (Tsinghua University); Wenchao Zou (Siemens China); Philip S Yu (UNIVERSITY OF ILLINOIS AT CHICAGO); Peng Cui (Tsinghua University)
Counteracting User Attention Bias in Music Streaming Recommendation via Reward Modification【
通过奖励修改抵消音乐流推荐中的用户注意力偏差
】
Xiao Zhang (Renmin University of China ); Sunhao Dai (Renmin University of China); Jun Xu (Renmin University of China)*; Zhenhua Dong (Huawei Noah's Ark Lab); Quanyu Dai (Huawei Noah's Ark Lab); Ji-Rong Wen (Renmin University of China)
协同过滤
Towards Representation Alignment and Uniformity in Collaborative Filtering【
协同过滤中的表征对齐和均匀性
】
Chenyang Wang (Tsinghua University)*; Yuanqing Yu (Tsinghua University); Weizhi Ma (Tsinghua University); Min Zhang (Tsinghua University); Chong Chen (Tsinghua University); Yiqun LIU (Tsinghua University); Shaoping Ma (Tsinghua University)
HICF: Hyperbolic Informative Collaborative Filtering【
HICF:双曲信息协同过滤
】
Menglin Yang (The Chinese University of Hong Kong)*; Li Zhihao (Harbin Institute of Technology, Shenzhen); Min Zhou (Huawei Technologies co. ltd); Jiahong Liu (Harbin Institute of Technology(Shenzhen)); Irwin King (The Chinese University of Hong Kong)
Device-Cloud Collaborative Recommendation via Meta Controller【
元控制器端云协同推荐
】
Jiangchao Yao (Shanghai Jiao Tong University)*; Feng 8 Wang (Alibaba Group); XICHEN DING (Ant Group); SHAOHU CHEN (Ant Group); Bo Han (HKBU / RIKEN); Jingren Zhou (Alibaba Group); Hongxia Yang (Alibaba Group)
强化学习
Learning Relevant Information in Conversational Search and Recommendation using Deep Reinforcement Learning【
使用深度强化学习在会话搜索和推荐中学习相关信息
】
Ali Montazeralghaem (University of Massachusetts Amherst)*; James Allan (University of Massachusetts Amherst)
MDP2 Forest: A Constrained Continuous Multi-dimensional Policy Optimization Approach for Short-video Recommendation【
MDP2 Forest:一种用于短视频推荐的受限连续多维策略优化方法
】
Sizhe Yu (Shanghai University of Finance and Economics)*; Ziyi Liu (School of Statistics, Renmin University of China); Shixiang Wan (Tencent); zero Jay (Tencent); Zang Li (DiDi AI Labs, Didi Chuxing); Fan Zhou (Shanghai University of Finance and Economics
Reinforcement Learning in the Wild: Scalable RL Dispatching Algorithm Deployed in Ridehailing Marketplace【强化学习用于调度算法】
Soheil Sadeghi Eshkevari (DiDi Labs)*; Xiaocheng Tang (DiDi AI Labs); Zhiwei Qin (DiDi AI Labs); Jinhan Mei (DiDi Global); Cheng Zhang (Didi Chuxing); Qianying Meng (DiDi Global); Jia Xu (DiDi Global)
ROI-Constrained Bidding via Curriculum-Guided Bayesian Reinforcement Learning【
贝叶斯强化学习进行 ROI 约束的投标
】
Haozhe Wang (ShanghaiTech University)*; Chao Du (Alibaba Group); Panyan Fang (Alibaba Group); Shuo Yuan (Alibaba Group); Xuming He (ShanghaiTech University); Liang Wang (Alibaba group); Bo Zheng (Alibaba Group)
Multi-Task Fusion via Reinforcement Learning for Long-Term User Satisfaction in Recommender Systems【
通过强化学习进行多任务融合以提高推荐系统中的长期用户满意度
】
Qihua Zhang (Tencent); Junning Liu (Tencent Inc.); Yuzhuo Dai (Tencent); Kunlun Zheng (Tencent); Fan Huang (Tencent)*; Yifan Yuan (Tencent); Xianfeng Tan (Tencent); Yiyan Qi (Tencent)
Learning Binarized Graph Representations with Multi-faceted Quantization Reinforcement for Top-K Recommendation【
Top-K推荐的多方面量化强化学习二值化图表征
】
Yankai Chen (The Chinese University of Hong Kong)*; Huifeng Guo (Huawei Noah's Ark Lab); Yingxue Zhang (Huawei Technologies Canada); Chen Ma (City University of Hong Kong); Ruiming Tang (Huawei Noah's Ark Lab); Jingjie Li (Huawei Noah's Ark Lab); Irwin King (The Chinese University of Hong Kong)
对比学习
User-tag Profile Modeling in Recommendation System via Contrast Weighted Tag Masking【
基于对比度加权标签掩蔽的推荐系统中的用户标签配置文件建模
】
Chenxu Zhu (Shanghai Jiao Tong University)*; Peng Du (Alibaba); Xianghui Zhu (SJTU); Weinan Zhang (Shanghai Jiao Tong University); Yong Yu (Shanghai Jiao Tong University); Yang Cao (Vision & Beauty Team, Alibaba Group)
CrossCBR: Cross-view Contrastive Learning for Bundle Recommendation【捆绑推荐中的对比学习】
Yunshan Ma (National University of Singapore )*; Yingzhi He (National University of Singapore); An Zhang (National University of Singapore); Xiang Wang (National University of Singapore); Tat-Seng Chua (National university of Singapore)
Contrastive Cross-domain Recommendation in Matching【
匹配中的对比跨域推荐
】
Ruobing Xie (WeChat Search Application Department, Tencent)*; Qi Liu (Tencent); Liangdong Wang (WeChat, Tencent); Shukai Liu (Tencent); Bo Zhang (WeChat Search Application Department, Tencent); Leyu Lin (WeChat Search Application Department, Tencent)
表征学习
Feature-aware Diversified Re-ranking with Disentangled Representations for Relevant Recommendation【
具有分离表征的特征感知多样化重排,用于相关推荐
】
Zihan Lin (Renmin University of China)*; Hui Wang (Renmin University of China); Jingshu Mao (Kuaishou Inc); Wayne Xin Zhao (Renmin University of China); Cheng Wang (Kuaishou Inc); Peng Jiang (Kuaishou Inc.); Ji-Rong Wen (Renmin University of China)
ItemSage: Learning Product Embeddings for Shopping Recommendations at Pinterest【
ItemSage:在 Pinterest 学习用于购物推荐的产品embedding
】
Paul D Baltescu (Pinterest)*; Paul Baltescu (Pinterest); Haoyu Chen (Pinterest); Nikil Pancha (Pinterest, Inc.); Andrew H Zhai (Pinterest, Inc.); Jure Leskovec (Stanford University); Charles Rosenberg (Pinterest)
PinnerFormer: Sequence Modeling for User Representation at Pinterest【
PinnerFormer:Pinterest 用户表征的序列建模
】
Nikil Pancha (Pinterest, Inc.)*; Andrew H Zhai (Pinterest, Inc.); Jure Leskovec (Stanford University); Charles Rosenberg (Pinterest)
Recommendation in offline stores: A gamification approach for learning the spatiotemporal representation of indoor shopping【
线下商店推荐:一种学习室内购物时空表征的游戏化方法
】
JongKyung Shin (Ulsan National Institute of Science and Technology); Changhun Lee (UNIST); Chiehyeon Lim (Ulsan National Institute of Science and Technology)*; Yunmo Shin (Retailtech co., Ltd.); Junseok Lim (Retailtech co., Ltd.)
Towards Universal Sequence Representation Learning for Recommender Systems【
面向推荐系统的通用序列表征学习
】
Yupeng Hou (Renmin University of China)*; Shanlei Mu (Renmin University of China); Wayne Xin Zhao (Renmin University of China); Yaliang Li (Alibaba Group); Bolin Ding ("Data Analytics and Intelligence Lab, Alibaba Group"); Ji-Rong Wen (Renmin University of China)
Aligning Dual Disentangled User Representations from Ratings and Textual Content【
从评级和文本内容中对齐双重分离的用户表征
】
Nhu-Thuat Tran (Singapore Management University)*; Hady Lauw (Singapore Management University)
特征交互与选择
Detecting Arbitrary Order Beneficial Feature Interactions for Recommender Systems【有益特征交互】
Yixin Su (The University of Melbourne)*; Yunxiang Zhao (The University of Melbourne); Sarah Erfani (University of Melbourne); Junhao Gan (University of Melbourne); Rui Zhang (ruizhang.info)
Adaptive Feature Selection in Deep Recommender Systems【
深度推荐系统中的自适应特征选择
】
Weilin LIN (City University of HongKong); Xiangyu Zhao (City University of Hong Kong)*; Yejing Wang (City University of Hongkong); Tong Xu (University of Science and Technology of China); Xian Wu (Tencent Medical AI Lab)
公平性,冷启动,个性化,多样性
Comprehensive Fair Meta-learned Recommender System【公平性,元学习】
Tianxin Wei (University of Illinois Urbana Champaign)*; Jingrui He (University of Illinois at Urbana-Champaign)
Task-optimized User Clustering based on Mobile App Usage for Cold-start Recommendations【
基于移动应用使用情况的任务优化用户聚类用于冷启动推荐
】
Bulou Liu (Tsinghua University)*; Bing Bai (Tencent); Weibang Xie (Tencent); Yiwen Guo (Independent Researcher); Hao Chen (UC Davis)
Personalized Chit-Chat Generation for Recommendation Using External Chat Corpora【
使用外部聊天语料库进行推荐的个性化闲聊生成
】
Changyu Chen (Renmin University of China); Xiting Wang (Microsoft Research Asia)*; Xiaoyuan Yi (Microsoft Research Asia); Fangzhao Wu (MSRA); Xing Xie (Microsoft Research Asia); Rui Yan (Peking University)
PARSRec: Explainable Personalized Attention-fused Recurrent Sequential Recommendation Using Session Partial Actions【个性化注意力融合的序列推荐】
Ehsan Gholami (University of California, Davis)*; Mohammad Motamedi (University of California, Davis); Ashwin Aravindakshan (University of California-Davis)
Uncovering the Heterogeneous Effects of Preference Diversity on User Activeness: A Dynamic Mixture Model【
揭示偏好多样性对用户活跃度的异质影响:动态混合模型
】
Yunfei Lu (Huawei)*; Peng Cui (Tsinghua University); Linyun Yu (Bytedance AI Lab); Lei Li (Bytedance); Wenwu Zhu (Tsinghua University)
硬件,系统等
Lion: A GPU-Accelerated Online Serving System for Web-Scale Recommendation at Baidu【GPU加速】
Hao Liu (HKUST)*; Qian Gao (Baidu, Inc); Xiaochao Liao (Baidu Inc.); Guangxing Chen (Baidu, Inc.); Hao Xiong (Baidu, Inc.); Silin Ren (Baidu Inc.); Guobao Yang (Baidu, Inc.); Zhiwei Zha (Baidu, Inc.)
Persia: An Open, Hybrid System Scaling Deep Learning-based Recommenders up to 100 Trillion Parameters【
Persia:一个开放的混合系统,将基于深度学习的推荐系统扩展到 100 万亿个参数
】
Xiangru Lian (University of Rochester)*; Binhang Yuan (ETH Zurich); Xuefeng Zhu (Kuaishou Technology); Yulong Wang (Kuaishou Technology); Yongjun He (ETH Zürich); wu honghuan (Kuaishou); Lei Sun (Kuaishou Technology); Haodong Lyu (Kuaishou Technology); Chengjun Liu (Kuaishou Technology); Xing Dong (Kuaishou Technology); Yiqiao Liao (Kuaishou Technology); Mingnan Luo (Kuaishou Technology); Congfei Zhang (Kuaishou Technology); Jingru Xie (Kwai Inc.); Haonan Li (Kuaishou Technology); Lei Chen (Kuaishou Technology); Renjie Huang (Kuaishou Technology); Jianying Lin (Kuaishou); Chengchun Shu (Kuaishou Technology); Xuezhong Qiu (Kuaishou Technology); Zhishan Liu (Kuaishou Technology); Dongying Kong (Kuaishou Technology); Lei Yuan (Kuaishou Technology); Hai Yu (Kuaishou Technology); Sen Yang (Kwai Inc.); Ce Zhang (ETH); Ji Liu (Kwai Inc.)
AutoShard: Automated Embedding Table Sharding for Recommender Systems【
AutoShard:推荐系统的自动嵌入表分片
】
Daochen Zha (Rice University)*; Louis Feng (Meta); Bhargav Bhushanam (Facebook); Dhruv Choudhary (Facebook Inc.); Jade Nie (Meta); Yuandong Tian (Facebook); Jay Chae (Meta); Yinbin Ma (Meta Platforms, Inc.); Arun Kejariwal (Facebook Inc.); Xia Hu (Rice University)
其他
Knowledge-enhanced Black-box Attacks for Recommendations【
针对推荐的知识增强黑盒攻击
】
Jingfan Chen (Nanjing University)*; Wenqi FAN (The Hong Kong Polytechnic University); Guanghui Zhu (Nanjing University); Xiangyu Zhao (City University of Hong Kong); Chunfeng Yuan (Nanjing University); Qing Li (The Hong Kong Polytechnic University ); Yihua Huang (Nanjing University)
FedAttack: Effective and Covert Poisoning Attack on Federated Recommendation via Hard Sampling【联邦推荐】
Chuhan Wu (Tsinghua University)*; Fangzhao Wu (MSRA); Tao Qi (Tsinghua University); Yongfeng Huang (Tsinghua University); Xing Xie (Microsoft Research Asia)
Towards Unified Conversational Recommender Systems via Knowledge-Enhanced Prompt Learning【
通过知识增强提示学习实现统一的会话推荐系统
】
Xiaolei Wang (Renmin University of China); Kun Zhou (Renmin University of China); Ji-Rong Wen (Renmin University of China); Wayne Xin Zhao (Renmin University of China)*
Affective Signals in a Social Media Recommender System【
社交媒体推荐系统中的情感信号
】
Jane Yu (Facebook)*; Yi-Chia Wang (Uber); Lijing Qin (Meta AI); Canton Cristian (Facebook AI); Alon Y Halevy (Facebook)
Pricing the Long Tail by Explainable Product Aggregation and Monotonic Bandits【
通过可解释的产品聚合和单调Bandit为长尾定价
】
Marco Mussi (Politecnico di Milano)*; Gianmarco Genalti (Politecnico di Milano); Francesco Trovò (Politecnico di Milano); Alessandro Nuara (Politecnico di Milano, Italy); Nicola Gatti (Politecnico di Milano); Marcello Restelli (Politecnico di Milano)
Multi Armed Bandit vs. A/B Tests in E-commence - Confidence Interval and Hypothesis Test Power Perspectives【
电子商务中的MAB与 A/B 测试 - 置信区间和假设测试功率观点
】
Ding Xiang (The Home Depot)*; Rebecca West (The Home Depot); Jiaqi Wang (The Home Depot); Xiquan Cui (Homedepot); Jinzhou Huang (The Home Depot)
Modeling the Effect of Persuasion Factor on User Decision for Recommendation【
对说服因素对用户推荐决策的影响进行建模
】
Chang Liu (Tsinghua University)*; Chen Gao (Tsinghua University); Yuan Yuan (Tsinghua University); BAI CHEN (Meituan); Lingrui Luo (Meituan); Xiaoyi Du (Meituan); shi xinlei (meituan); Hengliang Luo (Meituan); Depeng Jin (Tsinghua University); Yong Li (Tsinghua University)
TwHIN: Embedding the Twitter Heterogeneous Information Network for Personalized Recommendation【
TwHIN:异构信息网络实现个性化推荐
】
Ahmed El-Kishky (Twitter)*; Thomas Markovich (Twitter); Serim Park (Twitter); Chetan Verma (Twitter); Baekjin Kim (Twitter); Ramy Eskander (Twitter); Yury Malkov (Twitter); Frank Portman (Twitter); Sofia Samaniego (Twitter); Ying Xiao (Twitter); Aria Haghighi (Twitter)
4SDrug: Symptom-based Set-to-set Small and Safe Drug Recommendation【
4SDrug:基于症状的套装小而安全的药物推荐
】
Yanchao Tan (Zhejiang University)*; Chengjun Kong (National University of Singapore); Leisheng Yu (Emory University); Pan Li (Purdue University); Chaochao Chen (Zhejiang University); Xiaolin Zheng (Zhejiang University); Vicki Hertzberg (Emory University); Carl Yang (Emory University)
Surrogate for Long-Term User Experience in Recommender Systems【
推荐系统中长期用户体验的替代品
】
Yuyan Wang (Google Brain)*; Mohit Sharma (University of Minnesota); Sriraj Badam (Google); Can Xu (Google); Qian Sun (Google); Lee Richardson (Google); Lisa Chung (Google); Ed H. Chi (Google); Minmin Chen (Google)
Automatically Discovering User Consumption Intents in Meituan【
美团自动发现用户消费意图
】
Yinfeng Li (Tsinghua University)*; Chen Gao (Tsinghua University); Xiaoyi Du (Meituan); HUAZHOU WEI (Meituan); Hengliang Luo (Meituan); Depeng Jin (Tsinghua University); Yong Li (Tsinghua University)
NxtPost: User to Post Recommendations in Facebook Groups【
NxtPost:Facebook 群组中的推荐
】
Fedor Borisyuk (Facebook)*; Kaushik Rangadurai (Facebook); Yiqun Liu (Facebook); Siddarth Malreddy (Facebook); Xiaoyi Liu (Facebook)】
Automatic Generation of Product-Image Sequence in E-commerce【
电子商务中产品-图像序列的自动生成
】
Xiaochuan Fan (JD.com)*; Chi Zhang (JD.com); Yong Yang (JD); Yue Shang (JD.com); xueying zhang (jd.com silicon valley research center); Zhen He (JD); Xiao Yun (JD.com); Bo Long (JD.com); Lingfei Wu (JD.COM Silicon Valley Research Center)
An Online Multi-task Learning Framework for Google Feed Ads Auction Models【
适用于 Google Feed 广告拍卖模型的在线多任务学习框架
】
Ning Ma (Google)*; Mustafa Ispir (Google); Yuan Li (Google); Yongpeng Yang (Google); Zhe Chen (Google); Derek Zhiyuan Cheng (Google); Lan Nie (Google); Kishor Barman (Google)
CERAM: Coverage Expansion for Recommendations by Associating Discarded Models【
CERAM:通过关联废弃模型来扩展推荐的覆盖范围
】
Yoshiki Matsune (Ritsumeikan University)*; Kota Tsubouchi (Yahoo Japan Corporation); Nobuhiko Nishio (Ritsumeikan University)
Training Large-Scale News Recommenders with Pretrained Language Models in the Loop【
在循环中使用预训练的语言模型训练大规模新闻推荐
】
Shitao Xiao (BUPT)*; Zheng Liu (MSRA); Yingxia Shao (BUPT); Tao Di (microsoft); Fangzhao Wu (Microsoft Research Asia); Bhuvan Middha (Microsoft); Xing Xie (Microsoft Research Asia)
Intelligent Request Strategy Design in Recommender System【
推荐系统中的智能请求策略设计
】
Xufeng Qian (Alibaba Group)*; Yue Xu (Alibaba Group); Fuyu Lv (Alibaba Group); Shengyu Zhang (Zhejiang University); Ziwen Jiang (Alibaba); Qingwen Liu (Alibaba Group ); Xiaoyi Zeng (Alibaba Group); Tat-Seng Chua (National university of Singapore); Fei Wu (Zhejiang University, China)
DDR: Dialogue based Doctor Recommendation for Online Medical Service【
DDR:基于对话的在线医疗服务医生推荐
】
Zhi Zheng (University of Science and Technology of China)*; Zhaopeng Qiu (Tencent Medical AI Lab); Tong Xu (University of Science and Technology of China); Xian Wu (Tencent Medical AI Lab); Xiangyu Zhao (City University of Hong Kong); Enhong Chen (University of Science and Technology of China); Hui Xiong (Rutgers University)
交流群:点击“联系作者”--备注“研究方向-公司或学校”
欢迎|论文宣传|合作交流
往期推荐
[流行度偏差的影响因素及去偏方法
2022-07-13
[RecSys 2022 推荐系统论文来了
2022-07-10
[KDD'22 | 基于显著性正则化的多任务学习
2022-07-09
[特征工程操作大全
2022-07-15
长按关注,更多精彩
点个在看你最好看