WWW2023 | 推荐系统,因果推断论文集锦

技术

picture.image

关注我们,一起学习~

picture.image

WWW 2023接收论文已经放出来啦,笔者这里主要总结了推荐系统和因果推断相关的论文。此次,图神经网络,跨域推荐,冷启动依旧是热点,当然还包括很多类型:自动机器学习,神经架构搜索NAS,因果推断,强化学习,公平性,还有prompt相关内容,感兴趣的小伙伴可以看看。

所有论文地址:https://www2023.thewebconf.org/program/accepted-papers/

推荐相关

Learning with Exposure Constraints in Recommendation Systems【在推荐系统中通过对曝光就行约束来学习】

Submodular Maximization in the Presence of Biases with Applications to Recommendation【存在偏差时的子模块最大化与推荐系统中的应用】

Scoping Fairness Objectives and Identifying Fairness Metrics for Recommender Systems: The Practitioners’ Perspective【推荐系统公平性目标和公平性指标】

P-MMF: Provider Max-min Fairness Re-ranking in Recommender System【P-MMF:推荐系统中供给方最大公平性重排】

Fairly Adaptive Negative Sampling for Recommendations【推荐系统中的公平自适应负采样】

RL-MPCA: A Reinforcement Learning Based Multi-Phase Computation Allocation Approach for Recommender Systems【RL-MPCA:一种基于强化学习的推荐系统多阶段计算分配方法】

Dynamically Expandable Graph Convolution for Streaming Recommendation【用于流式推荐的动态可扩展图卷积】

Dual Policy Learning for Aggregation Optimization in Recommender Systems【推荐系统中聚合优化的双策略学习】

Automatic Feature Selection By One-Shot Neural Architecture Search In Recommendation Systems【one

-shot神经架构搜索自动选择特征】

Semi-supervised Adversarial Learning for Complementary Item Recommendation【互补商品推荐的半监督对抗学习】

Recommendation with Causality enhanced Natural Language Explanations【因果关系增强自然语言解释的推荐】

Enhancing User Personalization in Conversational Recommenders【增强对话式推荐器中的用户个性化】

LINet: A Location and Intention-Aware Neural Network for Hotel Group Recommendation【LINet:用于酒店group推荐的位置和意图感知神经网络】

Multi-Modal Adversarial Self-Supervised Learning for Recommendation【多模态对抗自监督学习推荐】

Distillation from Heterogeneous Models for Top-K Recommendation【从异构模型中蒸馏用于 top-K 推荐】

On the Theories Behind Hard Negative Sampling for Recommendation【负采样背后的理论】

Fine-tuning Partition-aware Item Similarities for Efficient and Scalable Recommendation【微调分区感知商品的相似性,以实现高效且可扩展的推荐】

Exploration and Regularization of the Latent Action Space in Recommendation【推荐中潜在动作空间的探索与正则化】

Bootstrap Latent Representations for Multi-modal Recommendation【多模态推荐的潜在表示】

Two-Stage Constrained Actor-Critic for Short Video Recommendation【短视频推荐中的两阶段约束AC强化学习】

Cross-domain recommendation via user interest alignment【通过用户兴趣对齐进行跨域推荐】

A Simple Data-Augmented Framework For Smoothed Recommender System【一种用于平滑推荐系统的简单数据增强框架】

Dual-interest Factorization-heads Attention for Sequential Recommendation【双重兴趣因子分解用于序列推荐】

Contrastive Collaborative Filtering for Cold-Start Item Recommendation【冷启动推荐的对比协同过滤】

Anti-FakeU: Defending Shilling Attacks on Graph Neural Network based Recommender Model【Anti-FakeU:基于图神经网络的推荐模型防御Shilling攻击】

Compressed Interaction Graph based Framework for Multi-behavior Recommendation【基于压缩交互图的多行为推荐框架】

A Counterfactual Collaborative Session-based Recommender System【一种基于反事实协作的会话推荐系统】

Correlative Preference Transfer with Hierarchical Hypergraph Network for Multi-Domain Recommendation【基于层次超图网络的偏好迁移的多域推荐】

Automated Self-Supervised Learning for Recommendation with Masked Graph Transformer【基于mask图transformer的自动自监督推荐学习】

Improving Recommendation Fairness via Data Augmentation【通过数据增强提高推荐公平性】

ColdNAS: Search to Modulate for User Cold-Start Recommendation【ColdNAS:搜索以调节用户冷启动推荐】

AutoS2AE: Automate to Regularize Sparse Shallow Autoencoders for Recommendation【AutoS2AE:自动规则化稀疏浅层自动编码器以供推荐】

Quantize Sequential Recommenders Without Private Data【量化序列推荐】

Interaction-level Membership Inference Attack Against Federated Recommender Systems【针对联邦推荐系统的交互级成员推断攻击】

Contrastive Learning with Interest and Conformity Disentanglement for Sequential Recommendation【具有兴趣和从众性的序列推荐的对比学习】

Clustered Embedding Learning for Large-scale Recommender Systems【大规模推荐系统的集群embedding学习】

CAMUS: Attribute-Aware Counterfactual Augmentation for Minority Users in Recommendation【CAMUS:推荐中针对少数类用户的属性感知反事实增强】

Confident Action Decision via Hierarchical Policy Learning for Conversational Recommendation【基于层次策略学习的会话推荐可信动作决策】

Mutual Wasserstein Discrepancy Minimization for Sequential Recommendation【序列推荐的相互Wasserstein差异最小化】

Denoising and Prompt-Tuning for Multi-Behavior Recommendation【多行为推荐的去噪和提示调整】

Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased Recommendations【在无偏推荐中平衡未观察到的混淆与少数无偏见的打分】

Cross-domain Recommendation with Behavioral Importance Perception【具有行为重要性感知的跨领域推荐】

A Self-Correcting Sequential Recommender【一种自校正序列推荐器】

Multi-Task Recommendations with Reinforcement Learning【具有强化学习的多任务推荐】

Modeling Temporal Positive and Negative Excitation for Sequential Recommendation【序列推荐的时间正激励和负激励建模】

Communicative MARL-based Relevance Discerning Network for Repetition-Aware Recommendation【基于交际MARL的重复感知推荐关联识别网络】

Membership Inference Attacks Against Sequential Recommender Systems【针对序列推荐系统的成员推断攻击】

NASRec: Weight Sharing Neural Architecture Search for Recommender Systems【NASRec:推荐系统的权重共享神经结构搜索】

AutoMLP: Automated MLP for Sequential Recommendations【AutoMLP:用于序列推荐的自动MLP】

Multi-Behavior Recommendation with Cascading Graph Convolutional Network【级联图卷积网络的多行为推荐】

Show Me The Best Outfit for A Certain Scene: A Scene-aware Fashion Recommender System【一个场景感知的时尚推荐系统】

Learning Vector-Quantized Item Representation for Transferable Sequential Recommenders【可迁移序列推荐的学习向量量化商品表示】

Cooperative Retriever and Ranker in Deep Recommenders

User Retention-oriented Recommendation with Decision Transformer【基于决策transformer的面向用户留存的推荐】

Few-shot News Recommendation via Cross-lingual Transfer【通过跨语言迁移的few-shot新闻推荐】

MMMLP: Multi-modal Multilayer Perceptron for sequence recommendation【MMMLP:用于序列推荐的多模态多层感知器】

Robust Preference-Guided Denoising for Graph based Social Recommendation【基于图的社交推荐的鲁棒偏好引导去噪】

Adap-τ\tau: Adpatively Modulating Embedding Magnitude for Recommendation【用于推荐的自适应调制embedding幅度】

IDPN: Instance Denoising for Click-through Rate Prediction【IDPN:点击率预测的实例去噪】

Collaboration-Aware Graph Convolutional Network for Recommender Systems【用于推荐系统的协作感知图卷积网络】

Enhancing Hierarchy-Aware Graph Networks with Deep Dual Clustering for Session-based Recommendation【利用深度对偶聚类增强层次感知图网络的会话推荐】

ConsRec: Learning Consensus Behind Interactions for Group Recommendation【ConsRec:group推荐互动背后的学习共识】

Semi-decentralized Federated Ego Graph Learning for Recommendation【用于推荐的半去中心化联邦图学习】

Joint Internal Multi-Interest Exploration and External Domain Alignment for Cross Domain Sequential Recommendation【跨域序列推荐的内部多兴趣联合探索和外部领域对齐】

Intra and Inter Domain HyperGraph Convolutional Network for Cross-Domain Recommendation【用于跨域推荐的域内和域间超图卷积网络】

Dual Intent Enhanced Graph Neural Network for Session-based New Item Recommendation【用于基于会话的推荐的双意图增强图神经网络】

ApeGNN: Node-Wise Adaptive Aggregation in GNNs for Recommendation【ApeGNN:用于推荐的GNN中的节点自适应聚合】

因果

Path-specific Causal Fair Prediction via Auxiliary Graph Structure Learning【基于辅助图结构学习的路径特定因果公平预测】

Graph Neural Network with Two Uplift Estimators for Label-Scarcity Individual Uplift Modeling【基于图神经网络和两个uplift估计器对标签稀缺性的个体建模】

CausIL: Causal Graph for Instance Level Microservice Data【CaustIL:实例级微服务数据的因果图】

Recommendation with Causality enhanced Natural Language Explanations【具有因果关系增强的自然语言解释的推荐】

Balancing Unobserved Confounding with a Few Unbiased Ratings in Debiased Recommendations【在无偏推荐中平衡未观察到的混淆与少数无偏见的打分】

Knowledge Graph Completion with Counterfactual Augmentation【具有反事实增广的知识图补全】

Generating Counterfactual Hard Negative Samples for Graph Contrastive Learning【用于图对比学习的反事实难负样本的生成】

A Counterfactual Collaborative Session-based Recommender System【一种基于反事实协作的会话推荐系统】

CAMUS: Attribute-Aware Counterfactual Augmentation for Minority Users in Recommendation【CAMUS:推荐中针对长尾用户的属性感知反事实增强】

Towards Model Robustness: Generating Contextual Counterfactuals for Entities in Relation Exaction【走向模型稳健性:在关系检验中为实体生成上下文反事实】

交流群:点击“联系 作者”--备注“研究方向-公司或学校”

欢迎|论文宣传|合作交流

往期推荐

[WWW 2023 | 自监督多模态推荐系统

2023-03-17

picture.image](https://mp.weixin.qq.com/s?__biz=MzkxNjI4MDkzOQ==&mid=2247494136&idx=1&sn=7e4068cabc8ad12f27d2f9175033e27f&chksm=c150eafcf62763eab5d043f69b2157e3f8e221e89bffbed92a1c4658dd2a4fb0aab7ab4ba4c3&scene=21#wechat_redirect)

[NIPS「Intel」多任务学习中的多目标优化问题

2023-03-12

picture.image](https://mp.weixin.qq.com/s?__biz=MzkxNjI4MDkzOQ==&mid=2247494126&idx=1&sn=e6b89f017d81de93ebae3f54810fe96d&chksm=c150eaeaf62763fc5d22141c910dc2a1d1646e1b04686a03ebe678041cb14ceef7511f659198&scene=21#wechat_redirect)

[腾讯 | 基于提示学习(prompt learning)进行序列推荐和冷启动

2023-03-05

picture.image](https://mp.weixin.qq.com/s?__biz=MzkxNjI4MDkzOQ==&mid=2247494085&idx=1&sn=e912079ac600cca660e95da71abc0f78&chksm=c150eac1f62763d799746e868af6ff6e07bc2ec4c0d429309860a32f3acd6423608912df3cd8&scene=21#wechat_redirect)

[WWW'23「快手」基于对比学习解耦因果表征用于推荐系统

2023-03-02

picture.image](https://mp.weixin.qq.com/s?__biz=MzkxNjI4MDkzOQ==&mid=2247494004&idx=1&sn=236737637ac50440b6ed8d8a8968fde1&chksm=c150ea70f627636693ffcac2a7aa8aa67aa35f69ac1cb5bea2be4696a521abbe480adaab2bb6&scene=21#wechat_redirect)

picture.image

长按关注,更多精彩

picture.image

点个在看你最好看

picture.image

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
CloudWeGo白皮书:字节跳动云原生微服务架构原理与开源实践
本书总结了字节跳动自2018年以来的微服务架构演进之路
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论