WSDM 2024 | 推荐系统和LLM相关论文整理

技术

picture.image

关注我们,一起学习

WSDM 2024接收的论文已经公布,以下整理了一些LLM和推荐系统相关的文章,全部收录的论文可前往地址

https://www.wsdm-conference.org/2024/accepted-papers/

picture.image

LLM大模型

Let the LLMs Talk: Simulating Human-to-Human Conversational QA via Zero-Shot LLM-to-LLM Interactions(阿姆斯特丹,港中文)【让LLM对话:通过零样本LLM-LLM交互模拟人与人的对话QA】

Zahra Abbasiantaeb (University of Amsterdam)*; Yifei Yuan (The Chinese University of Hong Kong); Evangelos Kanoulas (University of Amsterdam); Mohammad Aliannejadi (University of Amsterdam)

GPT4Table: Can Large Language Models Understand Structured Table Data? A Benchmark and Empirical Study(新加坡国立,微软)【GPT4Table:大型语言模型能理解结构化表数据吗?基准与实证研究】

Yuan Sui (National University of Singapore)*; Mengyu Zhou (Microsoft Research); Mingjie Zhou (The University of Hong Kong); Shi Han (Microsoft Research); Dongmei Zhang (Microsoft Research Asia)

Large Language Models for Data Aumgnetation in Recommendation(港大,百度)【LLm为推荐模型做数据增广】

Wei Wei (University of Hong Kong)*; Xubin Ren (the University of Hong Kong); Jiabin Tang (University of Hong Kong); Qinyong Wang (Baidu Inc); Lixin Su (University of Chinese Academy of Sciences); Suqi Cheng (Baidu Inc.); junfeng wang (Baidu); Dawei Yin (Baidu); Chao Huang (University of Hong Kong)

ONCE: Boosting Content-based Recommendation with Both Open- and Closed-source Large Language Models(香港理工)【ONCE:用开源和闭源大型语言模型促进基于内容的推荐】 Qijiong Liu (The Hong Kong Polytechnic University)*; NUO CHEN (Waseda University); Tetsuya Sakai (Waseda University); Xiao-Ming Wu (PolyU Hong Kong)

Temporal Blind Spots in Large Language Models【大型语言模型中的时间盲点】

Jonas Wallat (L3S Research Center)*; Adam Jatowt (University of Innsbruck); Avishek Anand (TU Delft)

推荐

Defense Against Model Extraction Attacks on Recommender Systems(南阳理工)【推荐系统攻防】 Sixiao Zhang (Nanyang Technological University)*; Hongzhi Yin (The University of Queensland); Hongxu Chen (The University of Queensland); Cheng Long (Nanyang Technological University)

Motif-based Prompt Learning for Universal Cross-domain Recommendation(首都师范)【基于Motif的通用跨域推荐提示学习】

Bowen Hao (Captial Normal University)*; Chaoqun Yang (Griffith University); Lei Guo (Shandong Normal University); Junliang Yu (The University of Queesland); Hongzhi Yin (The University of Queensland)

To Copy, or not to Copy; That is a Critical Issue of the Output Softmax Layer in Neural Sequential Recommenders(亚马逊)【复制或不复制;这是神经序列推荐器中输出Softmax层的一个关键问题】

Haw-shiuan Chang (Amazon)*; Nikhil Agarwal (Amazon.com); Andrew McCallum (Univ of Massachusetts Amherst)

Linear Recurrent Units for Sequential Recommendation(伊利诺伊)【序列推荐的线性递归单元】

Zhenrui Yue (University of Illinois Urbana-Champaign); Yueqi Wang (University of California, Berkeley); Zhankui He (UC, San Diego)*; Huimin Zeng (University of Illinois at Urbana-Champaign); Julian McAuley (UCSD); Dong Wang (University of Illinois Urbana-Champaign)

User Behavior Enriched Temporal Knowledge Graph for Sequential Recommendation(新加坡国立,华为)【用户行为丰富知识图谱,用于序列推荐】

Hengchang Hu (National University of Singapore)*; Wei Guo (Huawei Noah’s Ark Lab); Xu Liu (National University of Singapore); Yong Liu (Huawei); Ruiming Tang (Huawei Noah’s Ark Lab); Rui Zhang (ruizhang.info); Min-Yen Kan (National University of Singapore)

Intent Contrastive Learning with Cross Subsequences for Sequential Recommendation(东吴大学)【基于跨子序列的意图对比学习序列推荐】

Xiuyuan Qin (Soochow University)*; Huanhuan Yuan (Soochow University); Pengpeng Zhao (Soochow University); Guanfeng Liu (Macquarie University); Fuzhen Zhuang (Institute of Artificial Intelligence, Beihang University); Victor S. Sheng (Texas Tech University)

Budgeted Embedding Table For Recommender Systems(昆士兰)【推荐系统的嵌入表研究】

Yunke Qu (The University of Queensland)*; Tong Chen (The University of Queensland); Quoc Viet Hung Nguyen (Griffith University); Hongzhi Yin (The University of Queensland)

Pre-trained Recommender Systems: A Causal Debiasing Perspective(威斯康星,亚马逊)【预训练推荐系统:因果去偏的视角】

Ziqian Lin (University of Wisconsin–Madison)*; Hao Ding (AWS AI Lab); Nghia Trong Hoang (Washington State University); Branislav Kveton (AWS AI Labs); Anoop Deoras (Amazon); Hao Wang (Rutgers University)

Dynamic Sparse Learning: A Novel Paradigm for Efficient Recommendation(中科大)【动态稀疏学习:一种高效推荐的新范式】

Shuyao Wang (University of Science and Technology of China)*; Yongduo Sui (University of Science and Technology of China); Jiancan Wu (University of Science and Technology of China); Zhi Zheng (University of Science and Technology of China); Hui Xiong (Hong Kong University of Science and Tech)

PEACE: Prototype lEarning Augmented transferable framework for Cross-domain rEcommendation(蚂蚁)【PEACE:用于跨域推荐的原型lEarning增强可迁移框架】

Chunjing Gan (Ant Group)*; Bo Huang (Ant Group); Binbin Hu (Ant Group); Jian Ma (Ant Group); Zhiqiang Zhang (Ant Group); Jun Zhou (Ant Financial); Guannan Zhang (Ant Group); WENLIANG ZHONG (Ant Group)

MADM: A Model-agnostic Denoising Module for Graph-based Social Recommendation(上交)【MADM:一个基于图的社交推荐的模型无关去噪模块】

Wenze Ma (Shanghai Jiao Tong University)*; Yuexian Wang (Shanghai Jiao Tong University); Yanmin Zhu (Shanghai Jiao Tong University); Zhaobo Wang (Shanghai Jiao Tong University); Mengyuan Jing (Shanghai Jiao Tong University); Xuhao Zhao (Shanghai Jiao Tong University); Jiadi Yu (Shanghai Jiao Tong University); Feilong Tang (Shanghai Jiao Tong University)

Collaboration and Transition: Distilling Item Transitions into Multi-Query Self-Attention for Sequential Recommendation(蒙特利尔,快手)【协作与转换:提取项目转换为序列推荐的多查询自注意力机制】

Tianyu Zhu (University of Montreal)*; Yansong Shi (Tsinghua University); Yuan Zhang (Kuaishou Inc.); Yihong Wu (Université de Montréal); Fengran Mo (Université de Montréal); Jian-Yun Nie (Université de Montréal)

CDRNP: Cross-Domain Recommendation to Cold-Start Users via Neural Process(中科院)【CDRNP:通过神经过程向冷启动用户提供跨领域推荐】

Xiaodong Li (Institute of Information Engineering, Chinese Academy of Sciences)*; Jiawei Sheng ( Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China); Jiangxia Cao (Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China); Tingwen Liu (Institute of Information Engineering, CAS); Wenyuan Zhang (Institute of Information Engineering, Chinese Academy of Sciences); Quangang Li (Institute of Information Engineering, CAS)

Inverse Learning with Extremely Sparse Feedback for Recommendation(卡耐基梅隆,快手)【具有极稀疏反馈的反向学习推荐】

Guanyu Lin (Carnegie Mellon University)*; Chen Gao (Tsinghua University); Yu Zheng (Tsinghua University); Yinfeng Li (Kuaishou Inc); Jianxin Chang (Kuaishou Inc); Yanan Niu (Kuaishou Inc); Yang Song (Kuaishou Technology); Kun Gai (AI); Zhiheng Li (Tsinghua University); Depeng Jin (Tsinghua University); Yong Li (Tsinghua University)

Contextual MAB Oriented Embedding Denoising for Sequential Recommendation(北邮)【面向上下文MAB的序列推荐嵌入去噪】

Zhichao Feng (Beijing University of Post and Telecommunications); Pengfei Wang (School of Computer Science, Beijing University of Posts and Telecommunications)*; Kaiyuan Li (Beijing University of Posts and Telecommunications); Chenliang Li (Wuhan University); Shangguang Wang (State Key Laboratory of Networking and Switching Technology)

Mixed Attention Network for Cross-domain Sequential Recommendation(卡耐基梅隆,快手)【跨域序列推荐的混合注意网络】

Guanyu Lin (Carnegie Mellon University)*; Chen Gao (Tsinghua University); Yu Zheng (Tsinghua University); Jianxin Chang (Kuaishou Inc); Yanan Niu (Kuaishou Inc); Yang Song (Kuaishou Technology); Kun Gai (AI); Zhiheng Li (Tsinghua University ); Depeng Jin (Tsinghua University); Yong Li (Tsinghua University); Meng Wang (Institute of Artificial Intelligence, Hefei Comprehensive National Science Center)

Knowledge Graph Context-Enhanced Diversified Recommendation(伊利诺伊)【知识图谱上下文增强的多样化推荐】

Xiaolong Liu (University of Illinois at Chicago)*; Liangwei Yang (University of Illinois at Chicago); Zhiwei Liu (Salesforce); Mingdai Yang (University of Illinios at Chicago); Chen Wang (University of Illinois at Chicago); Hao Peng (Beihang University); Philip S Yu (UIC)

Exploring Adapter-based Transfer Learning for Recommender Systems: Empirical Studies and Practical Insights(西湖大学)【基于适配器的推荐系统迁移学习探索:实证研究与实践启示】

Junchen Fu (Westlake University)*; Fajie Yuan (Westlake University); Yu Song (Westlake University); Zheng Yuan (Westlake University); Mingyue Cheng (University of Science and Technology of China); Shenghui Cheng (Westlake University); Jiaqi Zhang (Westlake University); Jie Wang (Westlake University); Yunzhu Pan (University of Electronic Science and Technology of China)

Diff-MSR: A Diffusion Model Enhanced Paradigm for Cold-Start Multi-Scenario Recommendation(香港城市大学,华为)【Diff-MSR:冷启动多场景推荐的扩散模型增强范式】

Yuhao Wang (City University of Hong Kong)*; Ziru Liu (City University Of HongKong ); Yichao Wang (Huawei Noah’s Ark Lab); Xiangyu Zhao (City University of Hong Kong); Bo Chen (Huawei Noah’s Ark Lab); Huifeng Guo (Huawei Noah’s Ark Lab); Ruiming Tang (Huawei Noah’s Ark Lab)

AutoPooling: Automated Pooling Search for Multi-valued Features in Recommendations(腾讯)

He Wei (Tencent Inc.)*; Meixi Liu (Machine learning platform department, Tencent TEG); Yang Zhang (Tencent Inc)

C^2DR: Robust Cross-Domain Recommendation based on Causal Disentanglement(中南)【C^2DR:基于因果解耦的鲁棒跨域推荐】

Menglin Kong (Central South University); Jia Wang (Xi’an Jiaotong-Liverpool University)*; Yushan Pan (Xi’an Jiaotong-Liverpool University); Haiyang Zhang (Xi’an Jiaotong-Liverpool University); Muzhou Hou (Central South Uinversity)

Unified Pretraining for Recommendation via Task Hypergraphs(伊利诺伊,Salesforce)【基于任务超图的推荐统一预训练】

Mingdai Yang (University of Illinios at Chicago)*; Zhiwei Liu (Salesforce); Liangwei Yang (University of Illinois at Chicago); Xiaolong Liu (University of Illinois at Chicago); Chen Wang (University of Illinois at Chicago); Hao Peng (Beihang University); Philip S Yu (UIC)

SSLRec: A Self-Supervised Learning Library for Recommendation(港大)【自监督推荐库】

Xubin Ren (the University of Hong Kong)*; Lianghao Xia (University of Hong Kong); Yuhao Yang (Wuhan University); Wei Wei (University of Hong Kong); Tianle Wang (HKU); Xuheng Cai (The University of Hong Kong); Chao Huang (University of Hong Kong)

Multi-Sequence Attentive User Representation Learning for Side-information Integrated Sequential Recommendation(深圳大学,腾讯)【辅助信息集成序列推荐的多序列注意用户表征学习】

Xiaolin Lin (Shenzhen University)*; Jinwei Luo (Shenzhen University); Junwei Pan (Tencent); Weike Pan (Shenzhen University); Zhong Ming (Shenzhen University); Xun Liu (Tencent); HUANG SHUDONG (tencent); Jie Jiang (Tencent Inc.)

LabelCraft: Empowering Short Video Recommendations with Automated Label Crafting(中科大,快手)【LabelCraft:通过自动标签制作实现短视频推荐】

Yimeng Bai (University of Science and Technology of China)*; Yang Zhang (University of Science and Technology of China); Jing Lu (Kuaishou Inc); Jianxin Chang (Kuaishou Inc); Xiaoxue Zang (Kuaishou Inc); Yanan Niu (Kuaishou); Yang Song (Kuaishou Technology); Fuli Feng (University of Science and Technology of China)

MONET: Modality-Embracing Graph Convolutional Network and Target-Aware Attention for Multimedia Recommendation(汉阳大学)【MONET:包含图卷积网络的模态和多媒体推荐的目标感知注意力】

Yungi Kim (Hanyang University); Taeri Kim (Hanyang University); Won-Yong Shin (Yonsei University, Korea); Sang-Wook Kim (Hanyang University, Korea)*

RecJPQ: Training Large-Catalogue Sequential Recommenders【RecJPQ:训练大型目录序列推荐】

Aleksandr V Petrov (University of Glasgow)*; Craig Macdonald (University of Glasgow)

On the Effectiveness of Unlearning in Session-Based Recommendation(山大)【基于会话的推荐中释放的有效性研究】

Xin Xin (Shandong University); Liu Yang (Shandong University)*; Ziqi Zhao (Shandong University); Pengjie Ren (Shandong University); Zhumin Chen (Shandong University); Jun Ma (Shandong University); Zhaochun Ren (Leiden University)

Proxy-based Item Representation for Attribute and Context-aware Recommendation(首尔国立大学)【基于代理的item表征】

Jinseok Seol (Seoul National University)*; Minseok Gang (Seoul National University); Sang-goo Lee (Seoul National University); Jaehui Park (University of Seoul)

IncMSR: An Incremental Learning Approach for Multi-Scenario Recommendation(清华,华为)【IncMSR:一种用于多场景推荐的增量学习方法】

Kexin Zhang (Tsinghua University)*; Yichao Wang (Huawei Noah’s Ark Lab); Xiu Li (Tsinghua University); Ruiming Tang (Huawei Noah’s Ark Lab); Rui Zhang (ruizhang.info)

Deep Evolutional Instant Interest Network for CTR Prediction in Trigger-Induced Recommendation(阿里)【触发推荐中CTR预测的深度进化即时兴趣网络】

Zhibo Xiao (Alibaba Group)*; Luwei Yang (Alibaba Group); Tao Zhang (Alibaba Group); Wen Jiang (Alibaba Group); Wei Ning ( Alibaba Group); Yujiu Yang (Tsinghua University)

User Consented Federated Recommender System Against Personalized Attribute Inference Attack

Qi Hu (Hong Kong University of Science and Technology)*; Yangqiu Song (Hong Kong University of Science and Technology)

Neural Kalman Filtering for Robust Temporal Recommendation(复旦,微软,亚马逊)【用于鲁棒时间推荐的神经卡尔曼滤波】

Jiafeng Xia (Fudan University)*; Dongsheng Li (Microsoft Research Asia); Hansu Gu (Amazon.com); Tun Lu (Fudan University); Peng Zhang (Fudan University); Li Shang (Fudan University); Ning Gu (Fudan University)

Attribute Simulation for Item Embedding Enhancement in Multi-interest Recommendation(天大)【多兴趣推荐中项目嵌入增强的属性仿真】

Yaokun Liu (Tianjin University)*; Xiaowang Zhang (Tianjin University); Minghui Zou (Tianjin University); Zhiyong Feng (Tianjin University)

Debiasing Sequential Recommenders through Distributionally Robust Optimization over System Exposure(山大)【基于系统曝光的分布鲁棒优化对序列推荐去偏】

Jiyuan Yang (Shandong University)*; Yue Ding (Shanghai Jiao Tong University); YIDAN WANG (SHANDONG UNIVERSITY); Pengjie Ren (Shandong University); Zhumin Chen (Shandong University); Fei Cai (National University of Defense Technology); Jun Ma (Shandong University); Rui Zhang (ruizhang.info); Zhaochun Ren (Leiden University); Xin Xin (Shandong University)

Knowledge Graph Diffusion Model for Recommendation(港大)【知识图扩散模型用于推荐】

Yangqin Jiang (University of Hong Kong)*; Yuhao Yang (Wuhan University); Lianghao Xia (University of Hong Kong); Chao Huang (University of Hong Kong)

Interact with the Explanations: Causal Debiased Explainable Recommendation System(上交,adobe)【因果去偏可解释推荐系统】

Xu Liu (Shanghai Jiao Tong University); Tong Yu (Adobe Research); Kaige Xie (Georgia Institute of Technology); Junda Wu (New York University); Shuai Li (Shanghai Jiao Tong University)*

Global Heterogeneous Graph and Target Interest Denoising for Multi-behavior Sequential Recommendation(天大)【多行为序列推荐的全局异构图和目标兴趣去噪】

Xuewei Li (Tianjin University); Hongwei Chen (College of Intelligence and Computing, Tianjin University)*; Jian Yu (Tianjin University); Mankun Zhao (Tianjin University); Tianyi Xu (Tianjin University); Wenbin Zhang (Information and Network Center, Tianjin University); Mei Yu (Tianjin University)

MultiFS: Automated Multi-Scenario Feature Selection in Deep Recommender Systems【MultiFS:深度推荐系统中的自动多场景特征选择】

Dugang Liu (Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University)*; Chaohua Yang (Shenzhen University); Xing Tang (Tencent); Yejing Wang (City University of Hongkong); Fuyuan Lyu (McGill University); weihong luo (tencent); Xiuqiang He (Tencent); Zhong Ming (Shenzhen University); Xiangyu Zhao (City University of Hong Kong)

Calibration-compatible Listwise Distillation of Privileged Features for CTR Prediction(山大,阿里)【list-wise蒸馏用于CTR预测校准】

Xiaoqiang Gui (Shandong University)*; Yueyao Cheng (Alibaba Group); Xiang-Rong Sheng (Alibaba Group); Yunfeng Zhao (Shandong University); Guoxian Yu (Shandong University); Shuguang Han (Alibaba Inc.); Yuning Jiang (Alibaba Group); Jian Xu (Alibaba Group); Bo Zheng (Alibaba Group)

交流群:点击“联系 作者”--备注“研究方向-公司或学校”

欢迎|论文宣传|合作交流

往期推荐

WSDM'24 | 港大/百度, LLMRec: 基于LLM增强的多模态图神经网络推荐

MvFS:推荐系统中的多视角特征选择方法

如何快速下载大模型?

直接放大推荐模型可行吗?存在什么问题?

长按关注,更多精彩

点个在看你最好看

picture.image

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
字节跳动客户端性能优化最佳实践
在用户日益增长、需求不断迭代的背景下,如何保证 APP 发布的稳定性和用户良好的使用体验?本次分享将结合字节跳动内部应用的实践案例,介绍应用性能优化的更多方向,以及 APM 团队对应用性能监控建设的探索和思考。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论