【NLP】多头注意力(Multi-Head Attention)的概念解析

机器学习算法数据库

picture.image

向AI转型的程序员都关注公众号 机器学习AI算法工程

一. 多头注意力

多头注意力(Multi-Head Attention)是一种在Transformer模型中被广泛采用的注意力机制扩展形式,它通过并行地运行多个独立的注意力机制来获取输入序列的不同子空间的注意力分布,从而更全面地捕获序列中潜在的多种语义关联。

picture.image

在多头注意力中,输入序列首先通过三个不同的线性变换层分别得到Query、Key和Value。然后,这些变换后的向量被划分为若干个“头”,每个头都有自己独立的Query、Key和Value矩阵。对于每个头,都执行一次Scaled Dot-Product Attention(缩放点积注意力)运算,即:

picture.image

最后,所有头的输出会被拼接(concatenate)在一起,然后再通过一个线性层进行融合,得到最终的注意力输出向量。

通过这种方式,多头注意力能够并行地从不同的角度对输入序列进行注意力处理,提高了模型理解和捕捉复杂依赖关系的能力。在实践中,多头注意力能显著提升Transformer模型在自然语言处理和其他序列数据处理任务上的性能。

二. 为什么使用多个注意力头

1、并行处理多种注意力模式:每个注意力头使用不同的线性变换,这意味着它们可以从输入序列的不同子空间中学习不同的特征关联。这样一来,模型可以通过多个注意力头同时关注输入序列的不同方面,例如语法结构、语义角色、主题转移等。

2、增加模型的学习能力和表达力:通过多个注意力头,模型可以学习到更丰富的上下文信息,每个头可能关注输入的不同特征,这些特征综合起来可以更全面地理解和处理输入序列。

3、提高模型性能:实验证明,多头注意力机制相较于单头注意力,往往能带来性能提升。这是因为模型可以通过并行处理和集成多个注意力头的结果,从不同角度捕捉数据的多样性,增强了模型对复杂序列任务的理解和泛化能力。

三. 多头自注意力(Multi-Head Self-Attention)

多头自注意力(Multi-Head Self-Attention)是多头注意力的一种,都属于注意力机制在深度学习中的应用,尤其是自然语言处理(NLP)领域的Transformer模型中。

3.1 自注意力就是Q=K=V?

picture.image

3.2 多头自注意力与多头注意力的区别

1、应用场景:

多头注意力不仅限于自注意力场景,它可以应用于任何形式的注意力机制,包括但不限于跨序列的注意力,比如在一个序列上对另一个序列的注意力(Cross-Attention)。

多头自注意力特指在同一序列内部,每个元素对其它所有元素的注意力机制进行了多头处理,用于捕获序列内元素间的复杂依赖关系,常见于Transformer的编码器和解码器中。

2、功能聚焦点:

多头注意力可以用来同时考虑多种类型的关联性,无论是否是同一序列内的元素间相互作用。

多头自注意力特别强调的是序列自身的自参照特性,即序列的每一个位置都能查看整个序列并据此调整自身的表现形式。

总结来说,多头注意力是一个通用术语,当应用于序列本身时,就成为多头自注意力。两者都是为了通过并行处理多个注意力视角来增强模型的表达能力和捕捉复杂模式的能力,只不过多头自注意力特别针对的是序列自身的上下文信息挖掘。

机器学习算法AI大数据技术

搜索公众号添加: datanlp

picture.image

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

搜索公众号添加: datayx

picture.image

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
CV 技术在视频创作中的应用
本次演讲将介绍在拍摄、编辑等场景,我们如何利用 AI 技术赋能创作者;以及基于这些场景,字节跳动积累的领先技术能力。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论