最好的大语言模型资源汇总 持续更新

大模型机器学习数据库

picture.image

向AI转型的程序员都关注公众号 机器学习AI算法工程

Contents

  • 数据 Data

  • 微调 Fine-Tuning

  • 推理 Inference

  • 评估 Evaluation

  • 体验 Usage

  • 知识库 RAG

  • 智能体 Agents

  • 搜索 Search

  • 书籍 Book

  • 课程 Course

  • 教程 Tutorial

  • 论文 Paper

  • Tips

资料获取地址

https://github.com/WangRongsheng/awesome-LLM-resourses?tab=readme-ov-file

数据 Data

Note

此处命名为 数据,但这里并没有提供具体数据集,而是提供了处理获取大规模数据的方法

我们始终秉持授人以鱼不如授人以渔

  1. AotoLabel: Label, clean and enrich text datasets with LLMs.

  2. LabelLLM: The Open-Source Data Annotation Platform.

  3. data-juicer: A one-stop data processing system to make data higher-quality, juicier, and more digestible for LLMs!

  4. OmniParser: a native Golang ETL streaming parser and transform library for CSV, JSON, XML, EDI, text, etc.

  5. MinerU: MinerU is a one-stop, open-source, high-quality data extraction tool, supports PDF/webpage/e-book extraction.

  6. PDF-Extract-Kit: A Comprehensive Toolkit for High-Quality PDF Content Extraction.

  7. Parsera: Lightweight library for scraping web-sites with LLMs.

  8. Sparrow: Sparrow is an innovative open-source solution for efficient data extraction and processing from various documents and images.

  9. Docling: Transform PDF to JSON or Markdown with ease and speed.

  10. GOT-OCR2.0: OCR Model.

  11. LLM Decontaminator: Rethinking Benchmark and Contamination for Language Models with Rephrased Samples.

  12. DataTrove: DataTrove is a library to process, filter and deduplicate text data at a very large scale.

  13. llm-swarm: Generate large synthetic datasets like Cosmopedia.

  14. Distilabel: Distilabel is a framework for synthetic data and AI feedback for engineers who need fast, reliable and scalable pipelines based on verified research papers.

  15. Common-Crawl-Pipeline-Creator: The Common Crawl Pipeline Creator.

  16. Tabled: Detect and extract tables to markdown and csv.

  17. Zerox: Zero shot pdf OCR with gpt-4o-mini.

  18. DocLayout-YOLO: Enhancing Document Layout Analysis through Diverse Synthetic Data and Global-to-Local Adaptive Perception.

  19. TensorZero: make LLMs improve through experience.

  20. Promptwright: Generate large synthetic data using a local LLM.

微调 Fine-Tuning

  1. LLaMA-Factory: Unify Efficient Fine-Tuning of 100+ LLMs.

  2. unsloth: 2-5X faster 80% less memory LLM finetuning.

  3. TRL: Transformer Reinforcement Learning.

  4. Firefly: Firefly: 大模型训练工具,支持训练数十种大模型

  5. Xtuner: An efficient, flexible and full-featured toolkit for fine-tuning large models.

  6. torchtune: A Native-PyTorch Library for LLM Fine-tuning.

  7. Swift: Use PEFT or Full-parameter to finetune 200+ LLMs or 15+ MLLMs.

  8. AutoTrain: A new way to automatically train, evaluate and deploy state-of-the-art Machine Learning models.

  9. OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework (Support 70B+ full tuning & LoRA & Mixtral & KTO).

  10. Ludwig: Low-code framework for building custom LLMs, neural networks, and other AI models.

  11. mistral-finetune: A light-weight codebase that enables memory-efficient and performant finetuning of Mistral's models.

  12. aikit: Fine-tune, build, and deploy open-source LLMs easily!

  13. H2O-LLMStudio: H2O LLM Studio - a framework and no-code GUI for fine-tuning LLMs.

  14. LitGPT: Pretrain, finetune, deploy 20+ LLMs on your own data. Uses state-of-the-art techniques: flash attention, FSDP, 4-bit, LoRA, and more.

  15. LLMBox: A comprehensive library for implementing LLMs, including a unified training pipeline and comprehensive model evaluation.

  16. PaddleNLP: Easy-to-use and powerful NLP and LLM library.

  17. workbench-llamafactory: This is an NVIDIA AI Workbench example project that demonstrates an end-to-end model development workflow using Llamafactory.

  18. OpenRLHF: An Easy-to-use, Scalable and High-performance RLHF Framework (70B+ PPO Full Tuning & Iterative DPO & LoRA & Mixtral).

  19. TinyLLaVA Factory: A Framework of Small-scale Large Multimodal Models.

  20. LLM-Foundry: LLM training code for Databricks foundation models.

  21. lmms-finetune: A unified codebase for finetuning (full, lora) large multimodal models, supporting llava-1.5, qwen-vl, llava-interleave, llava-next-video, phi3-v etc.

  22. Simplifine: Simplifine lets you invoke LLM finetuning with just one line of code using any Hugging Face dataset or model.

  23. Transformer Lab: Open Source Application for Advanced LLM Engineering: interact, train, fine-tune, and evaluate large language models on your own computer.

  24. Liger-Kernel: Efficient Triton Kernels for LLM Training.

  25. ChatLearn: A flexible and efficient training framework for large-scale alignment.

  26. nanotron: Minimalistic large language model 3D-parallelism training.

  27. Proxy Tuning: Tuning Language Models by Proxy.

  28. Effective LLM Alignment: Effective LLM Alignment Toolkit.

  29. Autotrain-advanced

  30. Meta Lingua: a lean, efficient, and easy-to-hack codebase to research LLMs.

推理 Inference

  1. ollama: Get up and running with Llama 3, Mistral, Gemma, and other large language models.

  2. Open WebUI: User-friendly WebUI for LLMs (Formerly Ollama WebUI).

  3. Text Generation WebUI: A Gradio web UI for Large Language Models. Supports transformers, GPTQ, AWQ, EXL2, llama.cpp (GGUF), Llama models.

  4. Xinference: A powerful and versatile library designed to serve language, speech recognition, and multimodal models.

  5. LangChain: Build context-aware reasoning applications.

  6. LlamaIndex: A data framework for your LLM applications.

  7. lobe-chat: an open-source, modern-design LLMs/AI chat framework. Supports Multi AI Providers, Multi-Modals (Vision/TTS) and plugin system.

  8. TensorRT-LLM: TensorRT-LLM provides users with an easy-to-use Python API to define Large Language Models (LLMs) and build TensorRT engines that contain state-of-the-art optimizations to perform inference efficiently on NVIDIA GPUs.

  9. vllm: A high-throughput and memory-efficient inference and serving engine for LLMs.

  10. LlamaChat: Chat with your favourite LLaMA models in a native macOS app.

  11. NVIDIA ChatRTX: ChatRTX is a demo app that lets you personalize a GPT large language model (LLM) connected to your own content—docs, notes, or other data.

  12. LM Studio: Discover, download, and run local LLMs.

  13. chat-with-mlx: Chat with your data natively on Apple Silicon using MLX Framework.

  14. LLM Pricing: Quickly Find the Perfect Large Language Models (LLM) API for Your Budget! Use Our Free Tool for Instant Access to the Latest Prices from Top Providers.

  15. Open Interpreter: A natural language interface for computers.

  16. Chat-ollama: An open source chatbot based on LLMs. It supports a wide range of language models, and knowledge base management.

  17. chat-ui: Open source codebase powering the HuggingChat app.

  18. MemGPT: Create LLM agents with long-term memory and custom tools.

  19. koboldcpp: A simple one-file way to run various GGML and GGUF models with KoboldAI's UI.

  20. LLMFarm: llama and other large language models on iOS and MacOS offline using GGML library.

  21. enchanted: Enchanted is iOS and macOS app for chatting with private self hosted language models such as Llama2, Mistral or Vicuna using Ollama.

  22. Flowise: Drag & drop UI to build your customized LLM flow.

  23. Jan: Jan is an open source alternative to ChatGPT that runs 100% offline on your computer. Multiple engine support (llama.cpp, TensorRT-LLM).

  24. LMDeploy: LMDeploy is a toolkit for compressing, deploying, and serving LLMs.

  25. RouteLLM: A framework for serving and evaluating LLM routers - save LLM costs without compromising quality!

  26. MInference: About To speed up Long-context LLMs' inference, approximate and dynamic sparse calculate the attention, which reduces inference latency by up to 10x for pre-filling on an A100 while maintaining accuracy.

  27. Mem0: The memory layer for Personalized AI.

  28. SGLang: SGLang is yet another fast serving framework for large language models and vision language models.

  29. AirLLM: AirLLM optimizes inference memory usage, allowing 70B large language models to run inference on a single 4GB GPU card without quantization, distillation and pruning. And you can run 405B Llama3.1 on 8GB vram now.

  30. LLMHub: LLMHub is a lightweight management platform designed to streamline the operation and interaction with various language models (LLMs).

  31. YuanChat

  32. LiteLLM: Call all LLM APIs using the OpenAI format [Bedrock, Huggingface, VertexAI, TogetherAI, Azure, OpenAI, Groq etc.]

  33. GuideLLM: GuideLLM is a powerful tool for evaluating and optimizing the deployment of large language models (LLMs).

  34. LLM-Engines: A unified inference engine for large language models (LLMs) including open-source models (VLLM, SGLang, Together) and commercial models (OpenAI, Mistral, Claude).

  35. OARC: ollama_agent_roll_cage (OARC) is a local python agent fusing ollama llm's with Coqui-TTS speech models, Keras classifiers, Llava vision, Whisper recognition, and more to create a unified chatbot agent for local, custom automation.

  36. g1: Using Llama-3.1 70b on Groq to create o1-like reasoning chains.

  37. MemoryScope: MemoryScope provides LLM chatbots with powerful and flexible long-term memory capabilities, offering a framework for building such abilities.

  38. OpenLLM: Run any open-source LLMs, such as Llama 3.1, Gemma, as OpenAI compatible API endpoint in the cloud.

  39. Infinity: The AI-native database built for LLM applications, providing incredibly fast hybrid search of dense embedding, sparse embedding, tensor and full-text.

评估 Evaluation

  1. lm-evaluation-harness: A framework for few-shot evaluation of language models.

  2. opencompass: OpenCompass is an LLM evaluation platform, supporting a wide range of models (Llama3, Mistral, InternLM2,GPT-4,LLaMa2, Qwen,GLM, Claude, etc) over 100+ datasets.

  3. llm-comparator: LLM Comparator is an interactive data visualization tool for evaluating and analyzing LLM responses side-by-side, developed.

  4. EvalScope

  5. Weave: A lightweight toolkit for tracking and evaluating LLM applications.

  6. MixEval: Deriving Wisdom of the Crowd from LLM Benchmark Mixtures.

  7. Evaluation guidebook: If you've ever wondered how to make sure an LLM performs well on your specific task, this guide is for you!

  8. Ollama Benchmark: LLM Benchmark for Throughput via Ollama (Local LLMs).

体验 Usage

  1. LMSYS Chatbot Arena: Benchmarking LLMs in the Wild

  2. CompassArena 司南大模型竞技场

  3. 琅琊榜

  4. Huggingface Spaces

  5. WiseModel Spaces

  6. Poe

  7. 林哥的大模型野榜

  8. OpenRouter

知识库 RAG

  1. AnythingLLM: The all-in-one AI app for any LLM with full RAG and AI Agent capabilites.

  2. MaxKB: 基于 LLM 大语言模型的知识库问答系统。开箱即用,支持快速嵌入到第三方业务系统

  3. RAGFlow: An open-source RAG (Retrieval-Augmented Generation) engine based on deep document understanding.

  4. Dify: An open-source LLM app development platform. Dify's intuitive interface combines AI workflow, RAG pipeline, agent capabilities, model management, observability features and more, letting you quickly go from prototype to production.

  5. FastGPT: A knowledge-based platform built on the LLM, offers out-of-the-box data processing and model invocation capabilities, allows for workflow orchestration through Flow visualization.

  6. Langchain-Chatchat: 基于 Langchain 与 ChatGLM 等不同大语言模型的本地知识库问答

  7. QAnything: Question and Answer based on Anything.

  8. Quivr: A personal productivity assistant (RAG) ⚡️🤖 Chat with your docs (PDF, CSV, ...) & apps using Langchain, GPT 3.5 / 4 turbo, Private, Anthropic, VertexAI, Ollama, LLMs, Groq that you can share with users ! Local & Private alternative to OpenAI GPTs & ChatGPT powered by retrieval-augmented generation.

  9. RAG-GPT: RAG-GPT, leveraging LLM and RAG technology, learns from user-customized knowledge bases to provide contextually relevant answers for a wide range of queries, ensuring rapid and accurate information retrieval.

  10. Verba: Retrieval Augmented Generation (RAG) chatbot powered by Weaviate.

  11. FlashRAG: A Python Toolkit for Efficient RAG Research.

  12. GraphRAG: A modular graph-based Retrieval-Augmented Generation (RAG) system.

  13. LightRAG: LightRAG helps developers with both building and optimizing Retriever-Agent-Generator pipelines.

  14. GraphRAG-Ollama-UI: GraphRAG using Ollama with Gradio UI and Extra Features.

  15. nano-GraphRAG: A simple, easy-to-hack GraphRAG implementation.

  16. RAG Techniques: This repository showcases various advanced techniques for Retrieval-Augmented Generation (RAG) systems. RAG systems combine information retrieval with generative models to provide accurate and contextually rich responses.

  17. ragas: Evaluation framework for your Retrieval Augmented Generation (RAG) pipelines.

  18. kotaemon: An open-source clean & customizable RAG UI for chatting with your documents. Built with both end users and developers in mind.

  19. RAGapp: The easiest way to use Agentic RAG in any enterprise.

  20. TurboRAG: Accelerating Retrieval-Augmented Generation with Precomputed KV Caches for Chunked Text.

  21. LightRAG: Simple and Fast Retrieval-Augmented Generation.

  22. TEN: the Next-Gen AI-Agent Framework, the world's first truly real-time multimodal AI agent framework.

  23. AutoRAG: RAG AutoML tool for automatically finding an optimal RAG pipeline for your data.

  24. KAG: KAG is a knowledge-enhanced generation framework based on OpenSPG engine, which is used to build knowledge-enhanced rigorous decision-making and information retrieval knowledge services.

智能体 Agents

  1. AutoGen: AutoGen is a framework that enables the development of LLM applications using multiple agents that can converse with each other to solve tasks. AutoGen AIStudio

  2. CrewAI: Framework for orchestrating role-playing, autonomous AI agents. By fostering collaborative intelligence, CrewAI empowers agents to work together seamlessly, tackling complex tasks.

  3. Coze

  4. AgentGPT: Assemble, configure, and deploy autonomous AI Agents in your browser.

  5. XAgent: An Autonomous LLM Agent for Complex Task Solving.

  6. MobileAgent: The Powerful Mobile Device Operation Assistant Family.

  7. Lagent: A lightweight framework for building LLM-based agents.

  8. Qwen-Agent: Agent framework and applications built upon Qwen2, featuring Function Calling, Code Interpreter, RAG, and Chrome extension.

  9. LinkAI: 一站式 AI 智能体搭建平台

  10. Baidu APPBuilder

  11. agentUniverse: agentUniverse is a LLM multi-agent framework that allows developers to easily build multi-agent applications. Furthermore, through the community, they can exchange and share practices of patterns across different domains.

  12. LazyLLM: 低代码构建多Agent大模型应用的开发工具

  13. AgentScope: Start building LLM-empowered multi-agent applications in an easier way.

  14. MoA: Mixture of Agents (MoA) is a novel approach that leverages the collective strengths of multiple LLMs to enhance performance, achieving state-of-the-art results.

  15. Agently: AI Agent Application Development Framework.

  16. OmAgent: A multimodal agent framework for solving complex tasks.

  17. Tribe: No code tool to rapidly build and coordinate multi-agent teams.

  18. CAMEL: Finding the Scaling Law of Agents. A multi-agent framework.

  19. PraisonAI: PraisonAI application combines AutoGen and CrewAI or similar frameworks into a low-code solution for building and managing multi-agent LLM systems, focusing on simplicity, customisation, and efficient human-agent collaboration.

  20. IoA: An open-source framework for collaborative AI agents, enabling diverse, distributed agents to team up and tackle complex tasks through internet-like connectivity.

  21. llama-agentic-system : Agentic components of the Llama Stack APIs.

  22. Agent Zero: Agent Zero is not a predefined agentic framework. It is designed to be dynamic, organically growing, and learning as you use it.

  23. Agents: An Open-source Framework for Data-centric, Self-evolving Autonomous Language Agents.

  24. AgentScope: Start building LLM-empowered multi-agent applications in an easier way.

  25. FastAgency: The fastest way to bring multi-agent workflows to production.

  26. Swarm: Framework for building, orchestrating and deploying multi-agent systems. Managed by OpenAI Solutions team. Experimental framework.

搜索 Search

  1. OpenSearch GPT: SearchGPT / Perplexity clone, but personalised for you.

  2. MindSearch: An LLM-based Multi-agent Framework of Web Search Engine (like Perplexity.ai Pro and SearchGPT).

  3. nanoPerplexityAI: The simplest open-source implementation of perplexity.ai.

  4. curiosity: Try to build a Perplexity-like user experience.

书籍 Book

  1. 《大规模语言模型:从理论到实践》

  2. 《大语言模型》

  3. 《动手学大模型Dive into LLMs》

  4. 《动手做AI Agent》

  5. 《Build a Large Language Model (From Scratch)》

  6. 《多模态大模型》

  7. 《Generative AI Handbook: A Roadmap for Learning Resources》

  8. 《Understanding Deep Learning》

  9. 《Illustrated book to learn about Transformers & LLMs》

  10. 《Building LLMs for Production: Enhancing LLM Abilities and Reliability with Prompting, Fine-Tuning, and RAG》

  11. 《大型语言模型实战指南:应用实践与场景落地》

  12. 《Hands-On Large Language Models》

  13. 《自然语言处理:大模型理论与实践》

  14. 《动手学强化学习》

  15. 《面向开发者的LLM入门教程》

  16. 《大模型基础》

课程 Course

  1. 斯坦福 CS224N: Natural Language Processing with Deep Learning

  2. 吴恩达: Generative AI for Everyone

  3. 吴恩达: LLM series of courses

  4. ACL 2023 Tutorial: Retrieval-based Language Models and Applications

  5. llm-course: Course to get into Large Language Models (LLMs) with roadmaps and Colab notebooks.

  6. 微软: Generative AI for Beginners

  7. 微软: State of GPT

  8. HuggingFace NLP Course

  9. 清华 NLP 刘知远团队大模型公开课

  10. 斯坦福 CS25: Transformers United V4

  11. 斯坦福 CS324: Large Language Models

  12. 普林斯顿 COS 597G (Fall 2022): Understanding Large Language Models

  13. 约翰霍普金斯 CS 601.471/671 NLP: Self-supervised Models

  14. 李宏毅 GenAI课程

  15. openai-cookbook: Examples and guides for using the OpenAI API.

  16. Hands on llms: Learn about LLM, LLMOps, and vector DBS for free by designing, training, and deploying a real-time financial advisor LLM system.

  17. 滑铁卢大学 CS 886: Recent Advances on Foundation Models

  18. Mistral: Getting Started with Mistral

  19. 斯坦福 CS25: Transformers United V4

  20. Coursera: Chatgpt 应用提示工程

  21. LangGPT: Empowering everyone to become a prompt expert!

  22. mistralai-cookbook

  23. Introduction to Generative AI 2024 Spring

  24. build nanoGPT: Video+code lecture on building nanoGPT from scratch.

  25. LLM101n: Let's build a Storyteller.

  26. Knowledge Graphs for RAG

  27. LLMs From Scratch (Datawhale Version)

  28. OpenRAG

  29. 通往AGI之路

  30. Andrej Karpathy - Neural Networks: Zero to Hero

  31. Interactive visualization of Transformer

  32. andysingal/llm-course

  33. LM-class

  34. Google Advanced: Generative AI for Developers Learning Path

  35. Anthropics:Prompt Engineering Interactive Tutorial

  36. LLMsBook

  37. Large Language Model Agents

  38. Cohere LLM University

  39. LLMs and Transformers

  40. Smol Vision: Recipes for shrinking, optimizing, customizing cutting edge vision models.

  41. Multimodal RAG: Chat with Videos

  42. LLMs Interview Note

  43. RAG++ : From POC to production: Advanced RAG course.

  44. Weights & Biases AI Academy: Finetuning, building with LLMs, Structured outputs and more LLM courses.

  45. Prompt Engineering & AI tutorials & Resources

  46. Learn RAG From Scratch – Python AI Tutorial from a LangChain Engineer

  47. LLM Evaluation: A Complete Course

教程 Tutorial

  1. 动手学大模型应用开发

  2. AI开发者频道

  3. B站:五里墩茶社

  4. B站:木羽Cheney

  5. YTB:AI Anytime

  6. B站:漆妮妮

  7. Prompt Engineering Guide

  8. YTB: AI超元域

  9. B站:TechBeat人工智能社区

  10. B站:黄益贺

  11. B站:深度学习自然语言处理

  12. LLM Visualization

  13. 知乎: 原石人类

  14. B站:小黑黑讲AI

  15. B站:面壁的车辆工程师

  16. B站:AI老兵文哲

  17. Large Language Models (LLMs) with Colab notebooks

  18. YTB:IBM Technology

  19. YTB: Unify Reading Paper Group

  20. Chip Huyen

  21. How Much VRAM

  22. Blog: 科学空间(苏剑林)

  23. YTB: Hyung Won Chung

  24. Blog: Tejaswi kashyap

  25. Blog: 小昇的博客

  26. 知乎: ybq

  27. W&B articles

  28. Huggingface Blog

  29. Blog: GbyAI

  30. Blog: mlabonne

  31. LLM-Action

论文 Paper

Note

🤝Huggingface Daily Papers、Cool Papers、ML Papers Explained

  1. Hermes-3-Technical-Report

  2. The Llama 3 Herd of Models

  3. Qwen Technical Report

  4. Qwen2 Technical Report

  5. Qwen2-vl Technical Report

  6. DeepSeek LLM: Scaling Open-Source Language Models with Longtermism

  7. DeepSeek-V2: A Strong, Economical, and Efficient Mixture-of-Experts Language Model

  8. Baichuan 2: Open Large-scale Language Models

  9. DataComp-LM: In search of the next generation of training sets for language models

  10. OLMo: Accelerating the Science of Language Models

  11. MAP-Neo: Highly Capable and Transparent Bilingual Large Language Model Series

  12. Chinese Tiny LLM: Pretraining a Chinese-Centric Large Language Model

  13. Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone

  14. Jamba-1.5: Hybrid Transformer-Mamba Models at Scale

  15. Jamba: A Hybrid Transformer-Mamba Language Model

  16. Textbooks Are All You Need

  17. Unleashing the Power of Data Tsunami: A Comprehensive Survey on Data Assessment and Selection for Instruction Tuning of Language Models data

  18. OLMoE: Open Mixture-of-Experts Language Models

  19. Model Merging Paper

  20. Baichuan-Omni Technical Report

  21. 1.5-Pints Technical Report: Pretraining in Days, Not Months – Your Language Model Thrives on Quality Data

  22. Baichuan Alignment Technical Report

Tips

  1. What We Learned from a Year of Building with LLMs (Part I)

  2. What We Learned from a Year of Building with LLMs (Part II)

  3. What We Learned from a Year of Building with LLMs (Part III): Strategy

  4. 轻松入门大语言模型(LLM)

  5. LLMs for Text Classification: A Guide to Supervised Learning

  6. Unsupervised Text Classification: Categorize Natural Language With LLMs

  7. Text Classification With LLMs: A Roundup of the Best Methods

  8. LLM Pricing

  9. Uncensor any LLM with abliteration

  10. Tiny LLM Universe

  11. Zero-Chatgpt

  12. Zero-Qwen-VL

  13. finetune-Qwen2-VL

  14. MPP-LLaVA

  15. build_MiniLLM_from_scratch

  16. Tiny LLM zh

  17. MiniMind: 3小时完全从0训练一个仅有26M的小参数GPT,最低仅需2G显卡即可推理训练.

  18. LLM-Travel: 致力于深入理解、探讨以及实现与大模型相关的各种技术、原理和应用

  19. Knowledge distillation: Teaching LLM's with synthetic data

  20. Part 1: Methods for adapting large language models

  21. Part 2: To fine-tune or not to fine-tune

  22. Part 3: How to fine-tune: Focus on effective datasets

  23. Reader-LM: Small Language Models for Cleaning and Converting HTML to Markdown

  24. LLMs应用构建一年之心得

  25. LLM训练-pretrain

  26. pytorch-llama: LLaMA 2 implemented from scratch in PyTorch.

  27. Preference Optimization for Vision Language Models with TRL 【support model】

  28. Fine-tuning visual language models using SFTTrainer 【docs】

  29. A Visual Guide to Mixture of Experts (MoE)

  30. Role-Playing in Large Language Models like ChatGPT

  31. Distributed Training Guide: Best practices & guides on how to write distributed pytorch training code.

  32. Chat Templates

  33. Top 20+ RAG Interview Questions

机器学习算法AI大数据技术

搜索公众号添加: datanlp

picture.image

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

搜索公众号添加: datayx

picture.image

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
大模型产品方案白皮书——PromptPilot
AI 正以空前速度重塑行业,大模型成为继移动互联网后的新科技浪潮。如何将其与业务深度融合,实现落地,仍是数字化转型的核心挑战。有效 Prompt 是驱动模型达成业务目标的关键,但业务诉求常模糊、缺乏标准答案,模型理解差异大。企业需让模型准确理解需求、稳定输出高质量结果,并在数据积累中持续优化性能与价值。 PromptPilot 应运而生,通过对话与任务用例自动生成高质量 Prompt 与评估标准,运行中持续识别并优化问题,释放大模型潜力,让非技术人员也能轻松驾驭大模型,推动落地与创新。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论