在大语言模型应用日益普及,意图识别作为人机交互的核心环节,面临着响应速度慢、成本高昂、重复调用等挑战。接下来将详细介绍一套完整的意图缓存库解决方案,通过五层智能缓存策略,构建高效、准确、可扩展的意图识别系统。
- 精确匹配 → 模板匹配 → 语义向量匹配 → 传统相似度匹配 → 大模型调用,多层次相似度算法,确保意图识别准确率
- 响应时间从1ms到3秒的性能梯度优化
- 成本控制和准确率保障的完美平衡
- 大幅降低大模型调用频次,节省API费用
概述
意图缓存库是一个高效的缓存系统,专门用于存储和管理用户意图识别结果。通过缓存已识别的意图,可以显著减少对大语言模型的重复调用,提升系统响应速度,同时保证意图识别的准确率。
核心目标
- 减少重复调用大模型:通过智能缓存策略,避免对相同或相似意图的重复识别
- 提升响应速度:从缓存中快速获取意图结果,减少网络延迟和计算时间
- 保证意图识别准确率:通过相似度匹配和缓存失效机制,确保返回准确的意图结果