pytorch+Unet图像分割:将图片中的盐体找出来

技术

picture.image

向AI转型的程序员都关注了这个号 👇👇👇

机器学习AI算法工程 公众号:datayx

什么是图像分割问题呢?简单的来讲就是给一张图像,检测是用框出框出物体,而图像分割分出一个物体的准确轮廓。也这样考虑,给出一张图像 I,这个问题就是求一个函数,从I映射到Mask。至于怎么求这个函数有多种方法。我们可以看到这个图,左边是给出图像,可以看到人和摩托车,右边是分割结果。

picture.image

求这个函数有很多方法,但是第一次将深度学习结合起来的是这篇文章全卷积网络(FCN),利用深度学习求这个函数。在此之前深度学习一般用在分类和检测问题上。由于用到CNN,所以最后提取的特征的尺度是变小的。和我们要求的函数不一样,我们要求的函数是输入多大,输出有多大。为了让CNN提取出来的尺度能到原图大小,FCN网络利用上采样和反卷积到原图像大小。然后做像素级的分类。

可以看图二,输入原图,经过VGG16网络,得到特征map,然后将特征map上采样回去。再将预测结果和ground truth每个像素一一对应分类,做像素级别分类。也就是说将分割问题变成分类问题,而分类问题正好是深度学习的强项。如果只将特征map直接上采样或者反卷积,明显会丢失很多信息。

picture.image

picture.image

FCN采取解决方法是将pool4、pool3、和特征map融合起来,由于pool3、pool4、特征map大小尺寸是不一样的,所以融合应该前上采样到同一尺寸。这里的融合是拼接在一起,不是对应元素相加。

picture.image

FCN是深度学习在图像分割的开山之作,FCN优点是实现端到端分割等,缺点是分割结果细节不够好,可以看到图四,FCN8s是上面讲的pool4、pool3和特征map融合,FCN16s是pool4和特征map融合,FCN32s是只有特征map,得出结果都是细节不够好,具体可以看自行车。由于网络中只有卷积没有全连接,所以这个网络又叫全卷积网络。

本文将先简单介绍Unet的理论基础,然后使用pytorch一步一步地实现Unet图像分割。因为主要目的是提供一个baseline模型给大家,所以代码主要关注在如何构造Unet的网络结构。

Unet

picture.image

图1: Unet的网络结构

Unet主要用于图像分割问题。图1是Unet论文中的网络结构图。

https://arxiv.org/abs/1505.04597

很多分割网络都是基于FCNs做改进,包括Unet。Unet包括两部分,可以看右图,第一部分,特征提取,VGG类似。第二部分上采样部分。由于网络结构像U型,所以叫Unet网络。

  1. 特征提取部分,每经过一个池化层就一个尺度,包括原图尺度一共有5个尺度。

  2. 上采样部分,每上采样一次,就和特征提取部分对应的通道数相同尺度融合,但是融合之前要将其crop。这里的融合也是拼接。
    个人认为改进FCN之处有:

  3. 多尺度

  4. 适合超大图像分割,适合医学图像分割

可以看出Unet是一个对称的结构,左半边是Encoder,右半边是Decoder。图像会先经过Encoder处理,再经过Decoder处理,最终实现图像分割。它们分别的作用如下:

  • Encoder:使得模型理解了图像的内容,但是丢弃了图像的位置信息。
  • Decoder:使模型结合Encoder对图像内容的理解,恢复图像的位置信息。

Encoder的部分和传统的网络结构类似,可以选择图中的结构,也可以选择VGG,ResNet等。随着卷积层的加深,特征图的长宽减小,通道增加。虽然Encoder提取了图像的高级特征,但是丢弃了图像的位置信息。所以在图像识别问题中,模型只需要Encoder的部分。因为图像识别不需要位置信息,只需要提取图像的内容信息。

Decoder的部分是Unet的重点。Decoder中涉及upconvolution这个概念。关于upconvolution,这里不做详细介绍,简单来说就是convolution的反向运算。Decoder的每一层都通过upconvolution(图中绿色箭头),并且和Encoder相对应的初级特征结合(图中的灰色箭头),逐渐恢复图像的位置信息。在Decoder中,随着卷积层的加深,特征图的长宽增大,通道减少。

Unet——输入输出

picture.image

医学图像是一般相当大,但是分割时候不可能将原图太小输入网络,所以必须切成一张一张的小patch,在切成小patch的时候,Unet由于网络结构原因适合有overlap的切图,可以看图,红框是要分割区域,但是在切图时要包含周围区域,overlap另一个重要原因是周围overlap部分可以为分割区域边缘部分提供文理等信息。可以看黄框的边缘,分割结果并没有受到切成小patch而造成分割情况不好。

本文用到的数据来源于Kaggle盐体分割比赛。这次比赛的问题是一个非常典型的图像分割问题。比赛中的大佬们基本上都用的Unet。

picture.image

我们的目标就是将图片中的盐体找出来。盐体有一些我不太懂的经济价值,反正是很有意义的。

以下是一些图片样例:

picture.image

PyTorch实现

代码 以及运行教程 获取:

关注微信公众号 datayx 然后回复
分割 即可获取。

AI项目体验地址 https://loveai.tech

Unet

本文定义的Unet网络结构和论文中的略有不同,但本质都采用的是Encoder和Decoder的结构。主要的不同点是:

  • Encoder的backbone基于ResNet18
  • 输入和输出图像大小一致

以下是Unet网络结构的pytorch代码,代码后附了详细的解释。

picture.image

picture.image

picture.image

  • 这里定义了两个class: DecoderUnetUnet是整个模型的结构, Decoder则是模型Decoder中的单层。

  • 使用pytorch构造模型时,需要基于 nn.Module定义类。 forward函数定义前向传播的逻辑。

  • Decoder中的 up运算定义为 nn.ConvTranspose2d,也就是upconvolution; conv_relu则定义为 nn.Conv2dnn.ReLU的组合。pytorch中需要用到 nn.Sequential将多个运算组合在一起。

  • Decoderforward函数定义了其前向传播的逻辑:1. 对特征图x1做upconvolution。2. 将x1和x2(encoder中对应的特征图)组合(concatenate)。3. 对组合后的特征图做卷积和relu。

  • 因为 Unet基于resnet18,所以定义运算时从 torchvision.models.resnet18取出来就可以。因为resnet18默认的是适用于RGB图片,而比赛中的图片是灰的,只有一个通道,所以 layer1中的卷基层需要自己定义。

  • layer1layer5属于encoder, encode4encode0属于decoder,呈对称结构。

  • 下表是经过各层的处理后,特征图的长/宽和通道数:

picture.image

Dataset

如果你了解keras,那么就会发现pytorch中的 Dataset和keras中的 DataGenerator类似。不同的是pytorch定义的 Dataset只返回1个样本,再通过 DataLoader定义 batch_size

Dataset的逻辑很简单,分为以下几步:

  • 读取图片
  • 预处理(resize, pad, 数据增强等)
  • 返回图片和Mask

Pytorch代码如下:

picture.image

picture.image

picture.image

Optimizer

optimizer采用的是SGD,同时用到了余弦退火学习率和快照集成来提升模型效果。

picture.image

结论

在没有数据增强和TTA等其他手段的情况下,本文的代码能够拿到0.76的成绩,是一个不错的baseline模型。


阅读过本文的人还看了以下文章:

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

搜索公众号添加: datayx

picture.image


机大数据技术与机器学习工程

搜索公众号添加: datanlp

picture.image

长按图片,识别二维码

0
0
0
0
关于作者

文章

0

获赞

0

收藏

0

相关资源
火山引擎AB测试总体经济影响
为充分了解火山引擎A/B测试平台为企业带来的潜在投资回报,火山引擎委托Forrester Consulting使用总 体经济影响(TEI)模型进行对其A/B测试产品潜在的投资回报率(ROI)进行评估分析。该研究的目的是为了给读者提供火山引擎A/B测试产品带来潜在财务影响评估的参考。
相关产品
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论