“ 太疯狂了,下周大概率是MOE的狂欢了,内容没什么好些的,提供2个地址,其他的直接拷贝readme了
https://github.com/open-compass/MixtralKit
mixtral工具包
https://huggingface.co/DiscoResearch/DiscoLM-mixtral-8x7b-v2
DiscoLM Mixtral 8x7b alpha是基于Mistral AI的Mixtral 8x7b的实验性8x7b MoE模型。该模型基于实验性代码,将模型权重转换为huggingface格式,并实现了基于Transformers的推理。然后,在Synthia、MethaMathQA和Capybara数据集上进行了微调。DiscoLM Mixtral 8x7b alpha是DiscoResearch项目,由Björn Plüster创建,并得到了社区的大力支持。
Table of Contents
- download
- benchmarks
- prompt-format
- datasets
Benchmarks
Huggingface Leaderboard
This model is still an early Alpha with experimental code and we can't guarantee that there all values are correct. The following are the scores from our own evaluation.
Metric | Value |
---|---|
ARC (25-shot) | 67.32 |
HellaSwag (10-shot) | 86.25 |
MMLU (5-shot) | 70.72 |
TruthfulQA (0-shot) | 54.17 |
Winogrande (5-shot) | 80.72 |
GSM8k (5-shot) | 25.09 (bad score. no clue why) |
Avg. | 64.05 |
评测脚本
https://github.com/EleutherAI/lm-evaluation-harness
FastEval
tbc
MTBench
{
"first\_turn": 7.89375,
"second\_turn": 7.5125,
"categories": {
"writing": 9.25,
"roleplay": 8.425,
"reasoning": 5.7,
"math": 5.85,
"coding": 4.45,
"extraction": 8.75,
"stem": 9.45,
"humanities": 9.75
},
"average": 7.703125
}
Prompt Format
Please note that you have to run the model with trust_remote_code=True
until the new arch is merged into transformers!
This model follows the ChatML format:
<|im_start|>system
You are DiscoLM, a helpful assistant.
<|im_end|>
<|im_start|>user
Please tell me possible reasons to call a research collective "Disco Research"<|im_end|>
<|im_start|>assistant
This formatting is also available via a pre-defined Transformers chat template, which means that lists of messages can be formatted for you with the apply_chat_template() method:
chat = [
{"role": "system", "content": "You are DiscoLM, a helpful assistant."},
{"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
]
tokenizer.apply_chat_template(chat, tokenize=False, add_generation_prompt=True)
If you use tokenize=True
and return_tensors="pt"
instead, then you will get a tokenized and formatted conversation ready to pass to model.generate()
.
Basic inference code:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("DiscoResearch/DiscoLM-mixtral-8x7b-v2", low_cpu_mem_usage=True, device_map="auto", trust_remote_code=True)
tok = AutoTokenizer.from_pretrained("DiscoResearch/DiscoLM-mixtral-8x7b-v2")
chat = [
{"role": "system", "content": "You are DiscoLM, a helpful assistant."},
{"role": "user", "content": "Please tell me possible reasons to call a research collective Disco Research"}
]
x = tokenizer.apply_chat_template(chat, tokenize=True, return_tensors="pt", add_generation_prompt=True).cuda()
x = model.generate(x, max_new_tokens=128).cpu()
print(tok.batch_decode(x))
Datasets
The following datasets were used for training DiscoLM Mixtral 8x7b alpha:
* [Synthia](https://huggingface.co/datasets/migtissera/Synthia-v1.3)
* [MetaMathQA](https://huggingface.co/datasets/meta-math/MetaMathQA)
* NousReseach Capybara (currently not public)