YOLOv12入门教程

机器学习算法数据库

picture.image

向AI转型的程序员都关注公众号 机器学习AI算法工程

论文链接: https://arxiv.org/abs/2502.12524

代码链接: https://github.com/sunsmarterjie/yolov12

长期以来,增强YOLO框架的网络架构一直至关重要,但一直专注于基于cnn的改进,尽管注意力机制在建模能力方面已被证明具有优越性。这是因为基于注意力的模型无法匹配基于cnn的模型的速度。本文提出了一种以注意力为中心的YOLO框架,即YOLOv12,与之前基于cnn的YOLO框架的速度相匹配,同时利用了注意力机制的性能优势。YOLOv12在精度和速度方面超越了所有流行的实时目标检测器。例如,YOLOv12-N在T4 GPU上以1.64ms的推理延迟实现了40.6% mAP,以相当的速度超过了高级的YOLOv10-N / YOLOv11-N 2.1%/1.2% mAP。这种优势可以扩展到其他模型规模。YOLOv12还超越了改善DETR的端到端实时检测器,如RT-DETR /RT-DETRv2: YOLOv12- s比RT-DETR- r18 / RT-DETRv2-r18运行更快42%,仅使用36%的计算和45%的参数。

总结:作者围提出YOLOv12目标检测模型,测试结果更快、更强,围绕注意力机制进行创新。

一、创新点总结

    作者构建了一个以注意力为核心构建了YOLOv12检测模型,主要创新点创新点如下:




    1、提出一种简单有效的区域注意力机制(area-attention)。




    2、提出一种高效的聚合网络结构R-ELAN。




    作者提出的area-attention代码如下:

          
class AAttn(nn.Module):
          
    """
          
    Area-attention module with the requirement of flash attention.
          
    Attributes:
          
        dim (int): Number of hidden channels;
          
        num_heads (int): Number of heads into which the attention mechanism is divided;
          
        area (int, optional): Number of areas the feature map is divided. Defaults to 1.
          
    Methods:
          
        forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.
          
    Examples:
          
        >>> import torch
          
        >>> from ultralytics.nn.modules import AAttn
          
        >>> model = AAttn(dim=64, num_heads=2, area=4)
          
        >>> x = torch.randn(2, 64, 128, 128)
          
        >>> output = model(x)
          
        >>> print(output.shape)
          

          
    Notes: 
          
        recommend that dim//num_heads be a multiple of 32 or 64.
          
    """
          

          
    def __init__(self, dim, num_heads, area=1):
          
        """Initializes the area-attention module, a simple yet efficient attention module for YOLO."""
          
        super().__init__()
          
        self.area = area
          

          
        self.num_heads = num_heads
          
        self.head_dim = head_dim = dim // num_heads
          
        all_head_dim = head_dim * self.num_heads
          

          
        self.qkv = Conv(dim, all_head_dim * 3, 1, act=False)
          
        self.proj = Conv(all_head_dim, dim, 1, act=False)
          
        self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)
          

          

          
    def forward(self, x):
          
        """Processes the input tensor 'x' through the area-attention"""
          
        B, C, H, W = x.shape
          
        N = H * W
          

          
        qkv = self.qkv(x).flatten(2).transpose(1, 2)
          
        if self.area > 1:
          
            qkv = qkv.reshape(B * self.area, N // self.area, C * 3)
          
            B, N, _ = qkv.shape
          
        q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split(
          
            [self.head_dim, self.head_dim, self.head_dim], dim=3
          
        )
          

          
        # if x.is_cuda:
          
        #     x = flash_attn_func(
          
        #         q.contiguous().half(),
          
        #         k.contiguous().half(),
          
        #         v.contiguous().half()
          
        #     ).to(q.dtype)
          
        # else:
          
        q = q.permute(0, 2, 3, 1)
          
        k = k.permute(0, 2, 3, 1)
          
        v = v.permute(0, 2, 3, 1)
          
        attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)
          
        max_attn = attn.max(dim=-1, keepdim=True).values
          
        exp_attn = torch.exp(attn - max_attn)
          
        attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)
          
        x = (v @ attn.transpose(-2, -1))
          
        x = x.permute(0, 3, 1, 2)
          
        v = v.permute(0, 3, 1, 2)
          

          
        if self.area > 1:
          
            x = x.reshape(B // self.area, N * self.area, C)
          
            v = v.reshape(B // self.area, N * self.area, C)
          
            B, N, _ = x.shape
          

          
        x = x.reshape(B, H, W, C).permute(0, 3, 1, 2)
          
        v = v.reshape(B, H, W, C).permute(0, 3, 1, 2)
          

          
        x = x + self.pe(v)
          
        x = self.proj(x)
          
        return x
      

结构上与YOLOv11里C2PSA中的模式相似,使用了Flash-attn进行运算加速。Flash-attn安装时需要找到与cuda、torch和python解释器对应的版本,Windows用户可用上述代码替换官方代码的AAttn代码,无需安装Flash-attn。

    R-ELAN结构如下图所示:

picture.image

作者基于该结构构建了A2C2f模块,与C2f/C3K2模块结构类似,代码如下:


          

          
class AAttn(nn.Module):
          
    """
          
    Area-attention module with the requirement of flash attention.
          
    Attributes:
          
        dim (int): Number of hidden channels;
          
        num_heads (int): Number of heads into which the attention mechanism is divided;
          
        area (int, optional): Number of areas the feature map is divided. Defaults to 1.
          
    Methods:
          
        forward: Performs a forward process of input tensor and outputs a tensor after the execution of the area attention mechanism.
          
    Examples:
          
        >>> import torch
          
        >>> from ultralytics.nn.modules import AAttn
          
        >>> model = AAttn(dim=64, num_heads=2, area=4)
          
        >>> x = torch.randn(2, 64, 128, 128)
          
        >>> output = model(x)
          
        >>> print(output.shape)
          

          
    Notes: 
          
        recommend that dim//num_heads be a multiple of 32 or 64.
          
    """
          

          
    def __init__(self, dim, num_heads, area=1):
          
        """Initializes the area-attention module, a simple yet efficient attention module for YOLO."""
          
        super().__init__()
          
        self.area = area
          

          
        self.num_heads = num_heads
          
        self.head_dim = head_dim = dim // num_heads
          
        all_head_dim = head_dim * self.num_heads
          

          
        self.qkv = Conv(dim, all_head_dim * 3, 1, act=False)
          
        self.proj = Conv(all_head_dim, dim, 1, act=False)
          
        self.pe = Conv(all_head_dim, dim, 7, 1, 3, g=dim, act=False)
          

          

          
    def forward(self, x):
          
        """Processes the input tensor 'x' through the area-attention"""
          
        B, C, H, W = x.shape
          
        N = H * W
          

          
        qkv = self.qkv(x).flatten(2).transpose(1, 2)
          
        if self.area > 1:
          
            qkv = qkv.reshape(B * self.area, N // self.area, C * 3)
          
            B, N, _ = qkv.shape
          
        q, k, v = qkv.view(B, N, self.num_heads, self.head_dim * 3).split(
          
            [self.head_dim, self.head_dim, self.head_dim], dim=3
          
        )
          

          
        # if x.is_cuda:
          
        #     x = flash_attn_func(
          
        #         q.contiguous().half(),
          
        #         k.contiguous().half(),
          
        #         v.contiguous().half()
          
        #     ).to(q.dtype)
          
        # else:
          
        q = q.permute(0, 2, 3, 1)
          
        k = k.permute(0, 2, 3, 1)
          
        v = v.permute(0, 2, 3, 1)
          
        attn = (q.transpose(-2, -1) @ k) * (self.head_dim ** -0.5)
          
        max_attn = attn.max(dim=-1, keepdim=True).values
          
        exp_attn = torch.exp(attn - max_attn)
          
        attn = exp_attn / exp_attn.sum(dim=-1, keepdim=True)
          
        x = (v @ attn.transpose(-2, -1))
          
        x = x.permute(0, 3, 1, 2)
          
        v = v.permute(0, 3, 1, 2)
          

          
        if self.area > 1:
          
            x = x.reshape(B // self.area, N * self.area, C)
          
            v = v.reshape(B // self.area, N * self.area, C)
          
            B, N, _ = x.shape
          

          
        x = x.reshape(B, H, W, C).permute(0, 3, 1, 2)
          
        v = v.reshape(B, H, W, C).permute(0, 3, 1, 2)
          

          
        x = x + self.pe(v)
          
        x = self.proj(x)
          
        return x
          

          

          
class ABlock(nn.Module):
          
    """
          
    ABlock class implementing a Area-Attention block with effective feature extraction.
          
    This class encapsulates the functionality for applying multi-head attention with feature map are dividing into areas
          
    and feed-forward neural network layers.
          
    Attributes:
          
        dim (int): Number of hidden channels;
          
        num_heads (int): Number of heads into which the attention mechanism is divided;
          
        mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;
          
        area (int, optional): Number of areas the feature map is divided.  Defaults to 1.
          
    Methods:
          
        forward: Performs a forward pass through the ABlock, applying area-attention and feed-forward layers.
          
    Examples:
          
        Create a ABlock and perform a forward pass
          
        >>> model = ABlock(dim=64, num_heads=2, mlp_ratio=1.2, area=4)
          
        >>> x = torch.randn(2, 64, 128, 128)
          
        >>> output = model(x)
          
        >>> print(output.shape)
          

          
    Notes: 
          
        recommend that dim//num_heads be a multiple of 32 or 64.
          
    """
          

          
    def __init__(self, dim, num_heads, mlp_ratio=1.2, area=1):
          
        """Initializes the ABlock with area-attention and feed-forward layers for faster feature extraction."""
          
        super().__init__()
          

          
        self.attn = AAttn(dim, num_heads=num_heads, area=area)
          
        mlp_hidden_dim = int(dim * mlp_ratio)
          
        self.mlp = nn.Sequential(Conv(dim, mlp_hidden_dim, 1), Conv(mlp_hidden_dim, dim, 1, act=False))
          

          
        self.apply(self._init_weights)
          

          
    def _init_weights(self, m):
          
        """Initialize weights using a truncated normal distribution."""
          
        if isinstance(m, nn.Conv2d):
          
            trunc_normal_(m.weight, std=.02)
          
            if isinstance(m, nn.Conv2d) and m.bias is not None:
          
                nn.init.constant_(m.bias, 0)
          

          
    def forward(self, x):
          
        """Executes a forward pass through ABlock, applying area-attention and feed-forward layers to the input tensor."""
          
        x = x + self.attn(x)
          
        x = x + self.mlp(x)
          
        return x
          

          

          
class A2C2f(nn.Module):  
          
    """
          
    A2C2f module with residual enhanced feature extraction using ABlock blocks with area-attention. Also known as R-ELAN
          
    This class extends the C2f module by incorporating ABlock blocks for fast attention mechanisms and feature extraction.
          
    Attributes:
          
        c1 (int): Number of input channels;
          
        c2 (int): Number of output channels;
          
        n (int, optional): Number of 2xABlock modules to stack. Defaults to 1;
          
        a2 (bool, optional): Whether use area-attention. Defaults to True;
          
        area (int, optional): Number of areas the feature map is divided. Defaults to 1;
          
        residual (bool, optional): Whether use the residual (with layer scale). Defaults to False;
          
        mlp_ratio (float, optional): MLP expansion ratio (or MLP hidden dimension ratio). Defaults to 1.2;
          
        e (float, optional): Expansion ratio for R-ELAN modules. Defaults to 0.5.
          
        g (int, optional): Number of groups for grouped convolution. Defaults to 1;
          
        shortcut (bool, optional): Whether to use shortcut connection. Defaults to True;
          
    Methods:
          
        forward: Performs a forward pass through the A2C2f module.
          
    Examples:
          
        >>> import torch
          
        >>> from ultralytics.nn.modules import A2C2f
          
        >>> model = A2C2f(c1=64, c2=64, n=2, a2=True, area=4, residual=True, e=0.5)
          
        >>> x = torch.randn(2, 64, 128, 128)
          
        >>> output = model(x)
          
        >>> print(output.shape)
          
    """
          

          
    def __init__(self, c1, c2, n=1, a2=True, area=1, residual=False, mlp_ratio=2.0, e=0.5, g=1, shortcut=True):
          
        super().__init__()
          
        c_ = int(c2 * e)  # hidden channels
          
        assert c_ % 32 == 0, "Dimension of ABlock be a multiple of 32."
          

          
        # num_heads = c_ // 64 if c_ // 64 >= 2 else c_ // 32
          
        num_heads = c_ // 32
          

          
        self.cv1 = Conv(c1, c_, 1, 1)
          
        self.cv2 = Conv((1 + n) * c_, c2, 1)  # optional act=FReLU(c2)
          

          
        init_values = 0.01  # or smaller
          
        self.gamma = nn.Parameter(init_values * torch.ones((c2)), requires_grad=True) if a2 and residual else None
          

          
        self.m = nn.ModuleList(
          
            nn.Sequential(*(ABlock(c_, num_heads, mlp_ratio, area) for _ in range(2))) if a2 else C3k(c_, c_, 2, shortcut, g) for _ in range(n)
          
        )
          

          
    def forward(self, x):
          
        """Forward pass through R-ELAN layer."""
          
        y = [self.cv1(x)]
          
        y.extend(m(y[-1]) for m in self.m)
          
        if self.gamma is not None:
          
            return x + (self.gamma * self.cv2(torch.cat(y, 1)).permute(0, 2, 3, 1)).permute(0, 3, 1, 2)
          
        return self.cv2(torch.cat(y, 1))
      

模型结构图如下:

picture.image

二、使用教程

2.1 准备代码

     首先,点击上方链接进入YOLOv12的GitHub仓库,按照图示流程下载打包好的YOLOv12代码与预训练权重文件到本地。

picture.image

    下载完成后解压, 使用PyCharm(或VsCode等IDE软件)打开,并将下载的预训练权重拷贝到解压的工程目录下,下文以PyCharm为例。

picture.image

2.2 准备数据集

    Ultralytics版本的YOLO所需格式的数据集标签为txt格式的文本文件,文本文件中保存的标签信息分别为:类别序号、中心点x/y坐标、标注框的归一化信息,每一行对应一个对象。图像中有几个标注的对象就有几行信息。

picture.image

自制数据集标注教程可看此篇文章:

https://blog.csdn.net/StopAndGoyyy/article/details/139906637

如果没有自己的数据集,本文提供一个小型数据集(摘自SIMD公共数据集)以供测试代码,包含24张训练集以及20张测试集

下载链接:https://pan.quark.cn/s/f318a977f81c

提取码:LQ68

下载完成后将提供的datasets文件夹解压并复制到工程路径下。

picture.image

创建 data.yaml文件保存数据集的相关信息,如果使用本文提供的数据集可使用以下代码:

picture.image


          
 # dataset path
          
train: ./images/train
          
val: ./images/test
          
test: ./images/test
          

          
# number of classes
          
nc: 15
          

          
# class names
          
names: ['car', 'Truck', 'Van', 'Long Vehicle','Bus', 'Airliner', 'Propeller Aircraft', 'Trainer Aircraft', 'Chartered Aircraft', 'Fighter Aircraft',\
          
        'Others', 'Stair Truck', 'Pushback Truck', 'Helicopter', 'Boat']
      

2.3 模型训练

    创建train.py文件,依次填入以下信息。epochs=2表示只训练两轮,通常设置为100-300之间,此处仅测试两轮。batch=1表示每批次仅训练一张图片,可按显存大小调整batchsize,一般24g卡可设置为16-64

picture.image


          
from ultralytics.models import YOLO
          
import os
          
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
          

          
if __name__ == '__main__':
          
    model = YOLO(model='ultralytics/cfg/models/11/yolo11.yaml')
          
    # model.load('yolov8n.pt')
          
    model.train(data='./data.yaml', epochs=2, batch=1, device='0', imgsz=640, workers=2, cache=False,
          
                amp=True, mosaic=False, project='runs/train', name='exp')
      

picture.image

picture.image

待软件控制台打印如下信息即为运行成功。如果Flash_attn包报错,可使用本文的A2代码对原文代码进行更改。

picture.image

     训练完成后在runs/train文件夹下保存有训练好的权重及相关训练信息。 ![picture.image](https://p6-volc-community-sign.byteimg.com/tos-cn-i-tlddhu82om/5362c46c373e4204be66778deb343da1~tplv-tlddhu82om-image.image?=&rk3s=8031ce6d&x-expires=1743314671&x-signature=qwtgBI9MKIGe8IK4gbJiGJ8xWbM%3D)

2.4 模型预测

    创建detect.py文件,填入训练好的权重路径及要检测的图片信息。

picture.image

三、小结

   浅谈一下YOLOv12的感受,相比前几代的YOLO,v12的改动较小,在结构上删除了SPPF模块,设计了A2C2f模块,在模型的几个位置进行了替换。从作者公布的实验数据来看,模型的计算量和参数量都有一定下降,同时检测性能有一定提升。也不得不感慨,YOLO更新换代的速度越来越快了。要说YOLO那个版本强,那当然是最新的最强。

机器学习算法AI大数据技术

搜索公众号添加: datanlp

picture.image

长按图片,识别二维码

阅读过本文的人还看了以下文章:

实时语义分割ENet算法,提取书本/票据边缘

整理开源的中文大语言模型,以规模较小、可私有化部署、训练成本较低的模型为主

《大语言模型》PDF下载

动手学深度学习-(李沐)PyTorch版本

YOLOv9电动车头盔佩戴检测,详细讲解模型训练

TensorFlow 2.0深度学习案例实战

基于40万表格数据集TableBank,用MaskRCNN做表格检测

《基于深度学习的自然语言处理》中/英PDF

Deep Learning 中文版初版-周志华团队

【全套视频课】最全的目标检测算法系列讲解,通俗易懂!

《美团机器学习实践》_美团算法团队.pdf

《深度学习入门:基于Python的理论与实现》高清中文PDF+源码

《深度学习:基于Keras的Python实践》PDF和代码

特征提取与图像处理(第二版).pdf

python就业班学习视频,从入门到实战项目

2019最新《PyTorch自然语言处理》英、中文版PDF+源码

《21个项目玩转深度学习:基于TensorFlow的实践详解》完整版PDF+附书代码

《深度学习之pytorch》pdf+附书源码

PyTorch深度学习快速实战入门《pytorch-handbook》

【下载】豆瓣评分8.1,《机器学习实战:基于Scikit-Learn和TensorFlow》

《Python数据分析与挖掘实战》PDF+完整源码

汽车行业完整知识图谱项目实战视频(全23课)

李沐大神开源《动手学深度学习》,加州伯克利深度学习(2019春)教材

笔记、代码清晰易懂!李航《统计学习方法》最新资源全套!

《神经网络与深度学习》最新2018版中英PDF+源码

将机器学习模型部署为REST API

FashionAI服装属性标签图像识别Top1-5方案分享

重要开源!CNN-RNN-CTC 实现手写汉字识别

yolo3 检测出图像中的不规则汉字

同样是机器学习算法工程师,你的面试为什么过不了?

前海征信大数据算法:风险概率预测

【Keras】完整实现‘交通标志’分类、‘票据’分类两个项目,让你掌握深度学习图像分类

VGG16迁移学习,实现医学图像识别分类工程项目

特征工程(一)

特征工程(二) :文本数据的展开、过滤和分块

特征工程(三):特征缩放,从词袋到 TF-IDF

特征工程(四): 类别特征

特征工程(五): PCA 降维

特征工程(六): 非线性特征提取和模型堆叠

特征工程(七):图像特征提取和深度学习

如何利用全新的决策树集成级联结构gcForest做特征工程并打分?

Machine Learning Yearning 中文翻译稿

蚂蚁金服2018秋招-算法工程师(共四面)通过

全球AI挑战-场景分类的比赛源码(多模型融合)

斯坦福CS230官方指南:CNN、RNN及使用技巧速查(打印收藏)

python+flask搭建CNN在线识别手写中文网站

中科院Kaggle全球文本匹配竞赛华人第1名团队-深度学习与特征工程

不断更新资源

深度学习、机器学习、数据分析、python

搜索公众号添加: datayx

picture.image

0
0
0
0
评论
未登录
看完啦,登录分享一下感受吧~
暂无评论