house.zhang
house.zhang
大数据社区征文
为了解决公司模型&特征迭代的系统性问题,提升算法开发与迭代效率,部门立项了特征平台项目。特征平台旨在解决数据存储分散、口径重复、提取复杂、链路过长等问题,在大数据与算法间架起科学桥梁,提供强有力的样本及特征数据支撑。平台从 Hive 、Hbase 、关系型数据库等大数据 ODS ( Operational Data store ) 层进行快速的数据 ETL ,将数据抽取到特征平台进行管理,并统一了
374
2
2
0
AI社区征文机器学习
机器学习是一种从数据生成规则、发现模型,来帮助我们预测、判断、分组和解决问题的技术。(机器学习是一种从数据中生产函数,而不是程序员直接编写函数的技术)说起函数就涉及到自变量和因变量,在机器学习中,把自变量叫做特征(feature)多个自变量分别可以定义为X1,X2..Xn,因变量叫做标签(label),可定义为Y,而一批特征和标签的集合,就是机器学习的数据集。机器学习的学习过程就是在已知的数据集的
888
1
0
0
大数据社区征文
目前互联网已经进入了AI驱动业务发展的阶段,传统的机器学习开发流程基本是以下步骤:数据收集->特征工程->训练模型->评估模型效果->保存模型,并在线上使用训练的有效模型进行预测。这种方式主要存在两个瓶颈:模型更新周期慢,不能有效反映线上的变化,最快小时级别,一般是天级别甚至周级别。另外一个是模型参数少,预测的效果差;模型参数多线上predict的时候需要内存大,QPS无法保证。针对这些问题,一般
775
2
0
1
大数据Flink
最近几年国内大数据apache开源社区计算框架最火的莫过于Flink,得益于阿里在后面的推动以及各大互联网大厂的参与,flink业已成为流式计算事实上的标准。一句话来介绍 Flink 就是 “Stateful Computations Over Streams”,基于数据流的有状态计算。flink的四个基石:Checkpoint、State、Time、Window。Checkpoint 机制,Fl
716
1
32
0
AI算法
我们周围存在大量的文字、语音、视频等信息,比如网络购物玲琅满目的商品信息,浏览抖音各种类型的信息,一个互联网产品是否具有吸引力,是看其有多智能,能够让用户发较小的时间能够获取他感兴趣的内容,这里面少不了推荐系统的作用了,它已经渗透到我们生活中的方方面面,他们解决的问题的本质都是一一样的,就是为了解决:“信息”过载的情况下,用户如何高效获取感兴趣的信息。在浩如烟海的互联网信息中和用户兴趣点之间,搭建
946
1
0
0
大数据
我们常说的大数据技术,大致主要起源于 Google 在 2004 年前后发表的三篇论文,其实数据处理早就存在,每个公司或者个人都有自己的大数据处理系统,并没有形成编程框架和理念,而这三篇论文也就是我们熟知的大数据三驾马车,分别是分布式文件系统 GFS、大数据分布式计算框架 MapReduce 和 NoSQL 数据库 BigTable,这三篇论文影响了当今大数据生态,可以称得上大数据的基石,Doug
700
2
0
0